

Aylsham High School Science Department

KS4 Combined Science Core Questions

Y10 and Y11

You can help improve your child's understanding, confidence and attainment in science by testing them on the core questions they have been taught in their science lessons.

Combined science is now a 2 year course, students will have to recall information taught over this long period of time, it is important to prevent forgetting of concepts learnt in this time period. Learning core questions is a key part of preparing for this new challenge.

Your child's teachers are testing them regularly in lessons, they will be tested on the core questions already taught.

Your child will know who their science teacher is, if you need to contact them regarding the core knowledge they are expected to be learning, please see the table of emails below.

Y10 classes

	Biology	Chemistry	Physics	
10A		cbridge@aylshamhigh.norfolk.sch.uk	mbeale@aylshamhigh.norfolk.sch.uk	
10C	mwilliams@aylshamhigh.norfolk.sch.uk	mbeale@aylshamhigh.norfolk.sch.uk	rmacpherson@aylshamhigh.norfolk.sch.uk	
10E		cbridge@aylshamhigh.norfolk.sch.uk	mbeale@aylshamhigh.norfolk.sch.uk	
10D				
10E	cconnor@aylshamhigh.norfolk.sch.uk	jsexton@aylshamhigh.norfolk.sch.uk	lcalvert@aylshamhigh.norfolk.sch.uk	
10F			mwilliams@aylshamhigh.norfolk.sch.uk	
10G	Mrs Goodliffe and Mr Goodman			
10H	cgoodliffe@aylshamhigh.norfolk.sch.uk and dgoodman@aylshamhigh.norfolk.sch.uk			

Y10 and 11 Biology Questions

SB1 Core Knowledge

	Question	Answer
1	What is the function of the nucleus in cells?	Contains DNA
2	What is the function of the cell membrane?	To control which substances <u>enter and exit</u> the cell.
3	What is the function of the mitochondria in cells?	Releases energy. Where aerobic <u>respiration</u> occurs.
4	What is the function of the ribosome in cells?	Making proteins.
5	Name three structures that you might find	Cell wall, vacuole, chloroplast.
	inside a plant cell but <i>not</i> inside an animal cell.	
6	What is the function of the chlorophyll in cells?	Traps light energy to be used in photosynthesis.
7	What is the function of the vacuole in plant cells?	Stores cell sap.
8	What is the function of the cell wall in plants?	Contains cellulose to provide support.
9	Prokaryotic cells (e.g. bacteria) differ from	Prokaryotic cells don't have a nucleus (they
	eukaryotic cells (e.g. animal) in what way?	have chromosomal and plasmid DNA instead)
10	What are the small loops of DNA in bacteria called?	Plasmid DNA
11	In what way are sperm and eggs cells similar to	Haploid nucleus. They contain half as many
	each other but different to body cells?	chromosomes as body cells.
12	List four ways that sperm cells are adapted for	They have an <u>acrosome</u> , <u>haploid</u> nucleus, many
	their function.	<u>mitochondria</u> and a <u>tail</u>
13	List three ways that egg cells are adapted for	They hold nutrients in their cytoplasm, have a
	their function.	haploid nucleus and changes occur in the cell
		membrane after fertilisation
14	How are the cells that line the small intestine	They have many tiny folds called microvilli that
	specialised for their function of absorbing food?	give them a <u>large surface area</u> .
15	How have developments in microscope	A higher magnification using electron
	technology helped us understand more about	microscopes has allowed us to see more detail
	cells?	including more sub-cellular structures.
16	What is 30 μm in mm?	0.03 mm (be ready for other examples)
17 H	What is 1150000 m in standard form?	1.15 x 10 ⁶ m (be ready for other examples)
18	How do you calculate the total magnification	Evepiece lens magnification x objective lens
	of a microscope?	magnification
19	How do you calculate the actual length of a	Actual length = magnified length ÷
	magnified image?	magnification
20	Which stain is used when viewing plant cells?	Iodine
21	Why might a scientist add methyl blue to an	It is a <u>stain</u> that makes objects in the slide <u>more</u>
	animal cell sample before viewing it under a	<u>visible.</u>
	microscope?	
22	What is an enzyme?	A <u>biological catalyst</u> made of <u>protein</u>
23	List three cellular reactions that enzymes	Respiration, photosynthesis, digestion, protein
	catalyse	synthesis and DNA replication.
24	Which enzyme breaks down protein? Name	Protease breaks down protein into amino acids
	the product formed.	
25	Which enzyme breaks down fat? Name the	Lipase breaks down fat into fatty acids and
	product formed.	glycerol
26	Which enzyme breaks down carbohydrate?	Carbohydrases such as amylase break down
	Name the product formed.	carbohydrates into sugars.

27	What is the uniquely shaped 'pocket' on the outside of an enzyme called?	The active site
28	What do we call substances that fit into the active site for enzymes to work on?	Substrates
29	Which model do we use to explain how enzymes work?	Lock and key model
30	State three conditions that might affect the rate at which an enzyme works.	Temperature, pH and substrate concentration
31	Which two conditions could affect the shape of an enzyme's active site?	Temperature and pH
32	What is a denatured enzyme?	An enzyme that has an <u>active site</u> which has <u>changed shape</u> and no longer allows the substrate to fit.
33	Define diffusion	Substances moving from <u>high to low</u> <u>concentration</u> (down a concentration gradient).
34	Define osmosis	The overall movement of solute molecules in a solution across a <u>partially permeable membrane</u> from a <u>dilute solution to a more concentrated</u> <u>one.</u>
35	Define active transport.	The movement of substances from an area of <u>low concentration into an area of higher</u> <u>concentration</u> . This requires <u>energy</u> .

CB2 Cells and Control

		T
	Question	Answer
1	What are the stages of mitosis?	Interphase, prophase, metaphase, anaphase, telophase
		and cytokinesis
2	Why do cells do mitosis?	Growth, repair and asexual reproduction
3	Describe mitosis	The production of two diploid daughter cells, genetically
		identical to each other and the parent cell.
4	What is cancer?	Uncontrolled mitosis. Rapid cell division can cause
		tumours that can damage the body.
5	How is growth different in plants and	In animals, cells divide then differentiate. In plants they
	animals?	divide, elongate then differentiate.
6	What is growth?	Growth is an increase in size as a result of an increase in
		number or size of cells.
7	What process leads to the creation of	Differentiation
	specialised cells?	
8	How are percentile charts used to	Mass and length/height of babies are checked on a
	monitor growth?	graph to compare to others the same age. Babies should
		remain on or around the same percentile line as they
		grow.
9	How can percentage change be	(Final value- initial value)/initial value x 100
	calculated?	
10	What are stem cells?	Cells that divide repeatedly over a long period of time to
		produce cells that can differentiate.
11	What are plant stem cells called?	Meristems

12	What is the difference between adult and embryonic stem cells?	Embryonic stem cells can differentiate to produce any kind of cell. Adult stem cells usually only produce specialised cells of one tissue type.
13	List two benefits associated with the use of stem cells in medicine	Benefits- can <u>treat</u> <u>different diseases</u> caused by damaged cells. Can be used to <u>test new drugs</u> and treatments on.
14	List two risks associated with the use of stem cells in medicine	Risks- if stem cells continue to divide this could cause <u>cancer</u> . Also if stem cells from one person are placed in another they could be killed by the immune system and be <u>'rejected'</u> .
15	What is the Central Nervous System (CNS) made up of?	The brain and the spinal cord
16	Describe the structures and functions of the parts at each end of a neurone.	Dendrite- tiny branches that receive impulses from receptor cells Axon terminal- allows signal to be transmitted to the next cell
17	What is the function of the myelin sheath?	Insulator. Speeds up the signal.
18	What are neurotransmitters? Where are they released?	<u>Chemicals</u> that are released at an axon terminal and <u>diffuse across the synapse</u> (gap) between neurones to pass on a signal.
19	What are the steps in the reflex arc?	Stimulus>receptor>sensory neurone>relay neurone> motor neurone> effector> response.

SB3 Core Knowledge

	Question	Answer
1	State two advantages of asexual	No need to find a mate
	reproduction	Quick to take advantage of resources
2	State a disadvantage of asexual reproduction	Almost no genetic variation- less adaptable to changes
3	State an advantage of sexual reproduction	Genetic variation for greater adaptability
4	State two disadvantage of sexual	Need to find a mate
	reproduction	Desirable characteristics are not always passed on
5	What are gametes?	Haploid <u>sex cell</u> s (e.g. eggs ,sperm, pollen)
6	Describe the products of meiosis	Cell division that produces four haploid daughter cells-
		genetically different to parent cell. These are gametes
		(sex cells).
7	What is a genome?	A complete set of chromosomes/ full set of DNA
8	Describe the structure of DNA	Two strands in a double helix, joined together by
		complementary bases with weak hydrogen bonds
		between each other.
9	How do the bases form complimentary	Cytosine- Guanine (with 3 weak Hydrogen bonds)
	pairs in DNA?	Adenine-Thymine (with 2 weak Hydrogen bonds)
10	What is a gene?	A section of DNA with the instructions for making a
		single protein.

11	When extracting DNA from fruit, what	lt br	ookc (down	the membranes around the cell and the
11	is the role of the detergent solution?		eus.	JOWII	
12	When extracting DNA from fruit, what		cold)	othar	
12	substance is used to precipitate DNA?	(ice-	-colu)	etnai	101
13	What are alleles?	Diff	aront	vorsio	ons of the same gene
13	What is an organisms genotype?				on of alleles an organism has for a
14	What is an organisms genotype!				e.g. Bb).
15	What is a phenotype?				ism looks like (as a result of its genotype)
15	How do alleles result in differences in			-	rent combinations of alleles result in
10	the characteristics inherited by an individual?				cteristics being 'expressed'.
17	Describe the genotype BB	Hon	nozyg	ous d	ominant (be prepared for other examples)
18	State the sex chromosomes contained within a male and a female body cell.	Mal	e = xy	. Fen	nale = xx.
19	Draw a punnett square to show that		x	х	
	the chance conceiving a girl is 50%				
		X	XX	XX	
		Y	ХҮ	XY	
20	Define mutation.	A ch	ange	in a g	ene that results in a new allele.
21	When does mutation usually occur?	Duri	ing ce	ll divi	sion.
22	How often will a mutation lead to a	Very	/ rare	y. M	ost characteristics are the result of more
	change in the phenotype of an organism? Why?	thar	n one	gene.	
23					
23	What is the human genome project?	A pr	oject	to ma	ap all 3.3 billion complementary bases in a
	What is the human genome project?	-	-		ap all 3.3 billion complementary bases in a uman chromosomes.
24	What is the human genome project? State two ways that information about	full	set of	46 hu	
		full : 1. Id	set of lentify	46 hu /ing tl	iman chromosomes.
	State two ways that information about a person's genome could be useful in	full : 1. ld 2. ld	set of lentify lentify	46 hu /ing tł /ing w	uman chromosomes. neir risk of developing certain diseases.
24	State two ways that information about a person's genome could be useful in medicine?	full s 1. ld 2. ld Sexu	set of lentify lentify ual rep	46 hu /ing tl /ing w produ	iman chromosomes. neir risk of developing certain diseases. /hich medicines will work best for them.
24	State two ways that information about a person's genome could be useful in medicine? What causes genetic variation? What defines data for discontinuous variation?	full s 1. ld 2. ld Sexu The	set of lentify lentify ual rep	46 hu /ing th /ing w produ	uman chromosomes. neir risk of developing certain diseases. which medicines will work best for them.
24	State two ways that information about a person's genome could be useful in medicine? What causes genetic variation? What defines data for discontinuous variation? What do we call variation where the	full 1. Id 2. Id Sexu The colo	set of lentify lentify ual rep data ur, se	46 hu ving th ving w produ can or x)	uman chromosomes. neir risk of developing certain diseases. which medicines will work best for them.
24 25 26	State two ways that information about a person's genome could be useful in medicine? What causes genetic variation? What defines data for discontinuous variation? What do we call variation where the data collected can be any value in a	full 1. Id 2. Id Sexu The colo	set of lentify lentify ual rep data ur, se	46 hu ving th ving w produ can or x)	uman chromosomes. neir risk of developing certain diseases. which medicines will work best for them. Inction and mutation nly take a limited set of values (e.g.
24 25 26 27	State two ways that information about a person's genome could be useful in medicine? What causes genetic variation? What defines data for discontinuous variation? What do we call variation where the data collected can be any value in a range?	full : 1. ld 2. ld Sexu The colo Con	set of lentify lentify data ur, se tinuo	46 hu ving th ving w produ can ou x) us var	iman chromosomes. heir risk of developing certain diseases. which medicines will work best for them. iction and mutation nly take a limited set of values (e.g.
24 25 26	State two ways that information about a person's genome could be useful in medicine? What causes genetic variation? What defines data for discontinuous variation? What do we call variation where the data collected can be any value in a range? What name do we give the bell-shaped	full : 1. ld 2. ld Sexu The colo Con	set of lentify lentify data ur, se tinuo	46 hu ving th ving w produ can ou x) us var	uman chromosomes. neir risk of developing certain diseases. which medicines will work best for them. Inction and mutation nly take a limited set of values (e.g.
24 25 26 27	State two ways that information about a person's genome could be useful in medicine? What causes genetic variation? What defines data for discontinuous variation? What do we call variation where the data collected can be any value in a range?	full : 1. ld 2. ld Sexu The colo Con	set of lentify lentify data ur, se tinuo	46 hu ving th ving w produ can ou x) us var	iman chromosomes. heir risk of developing certain diseases. which medicines will work best for them. iction and mutation nly take a limited set of values (e.g.

SB4 Core Knowledge

	Question	Answer	
1	What are the five key stages in	1. Genetic variation	
	Darwin's theory of evolution by	2. Change causes competition	
	natural selection?	3. Natural selection (survival of the 'fittest')	
		4. Inheritance (successful genes are passed on)	
		5. Evolution (over many years)	
2	Explain how the emergence of	Bacteria reproduce very quickly compared to most other	
	resistant organisms supports	organisms. Helpful mutations inherited and population adapt	
	Darwin's theory of evolution	to new conditions.	

	including antibiotic resistance in	
	bacteria.	
3	What fossil evidence do we have	A Ardi from 4.4 million years ago
	for the evolution of humans?	b Lucy from 3.2 million years ago
		c Leakey's discovery of fossils from 1.6 million years ago
4	Describe the changes seen in	Humans have become <u>taller</u> , <u>larger skulls</u> (bigger brain
	fossils as early humans have evolved.	volume) and have <u>shorter arms</u> .
5	Explain how we can date fossils	Carbon dating.
	and tools.	Comparing them to other samples already dated.
		Using the age of the rock formation they were found in.
6	Describe how tools have	Tools have become sharper and changed shapes as humans
	developed over time	evolved, more modern tools have become more <u>sophisticated</u>
7	What are the five kingdoms used	Animals, Plants, Fungi, Prokaryotes and Protists.
	to classify all living organisms?	
8	Describe how genetic analysis has	Some single-celled organisms were found to have genes more
	led to the suggestion of the three	similar to plants and animals than to prokaryotes.
	domains rather than the five	
	kingdoms classification method	
9	What are the three domains and	Archaea- no nucleus, genes contain unused sections of DNA
	how are organisms classified into	Bacteria- no nucleus, no unused sections in genes
	them?	Eukarya – has nucleus, unused sections in genes
10	What is a binomial name?	A two word Latin name (written in <i>italics</i>) from the <u>genus</u> and
		species of an organism E.g. Homo sapiens
11	What is selective breeding?	Selecting organisms with desirable characteristics,
		Breeding them
		Selecting offspring that have inherited those characteristics for
12		further rounds of breeding.
12	What has the impact of selective	Food plants (crops): higher yield, nutritional value, pest and disease resistance and also tolerance to common weather
	breeding been on food plants and domesticated animals?	conditions.
		Domesticated animals: grow faster, healthier, are more fertile,
		produce higher yields of meat, milk or wool and have
		temperaments useful for their role.
13	What is genetic engineering?	A process which involves modifying the genome of an
10		organism to introduce desirable characteristics.
14	Describe how a bacterium can be	Restriction enzymes are used to remove the human insulin
	genetically modified to produce	gene from the human chromosome and to cut open the
	human insulin.	plasmid- creating 'sticky ends' of overhanging bases. DNA
		ligase enzymes are used to insert the human gene into the
		plasmid. Then the plasmid containing human insulin gene
		inserted into a bacterium.
15	Evaluate the benefits of genetic	Benefits: Can get desirable characteristics quickly .
	engineering in modern	Genes can be moved between species. E.g. insulin producing
	agriculture and medicine.	bacteria
16	Evaluate risks of genetic	Risks: risk of cross breeding, unknown health effects of eating
	engineering in modern	GM foods. If the gene mutates further we are unsure of the
	agriculture and medicine,	effects.
	including practical and ethical	
	implications	

17	Evaluate the benefits of selective breeding in modern agriculture and medicine.	Benefits: 'natural' process using only the genes that exist in the species, Achievable for many plant and animal owners. Can produce organisms better suited to our needs.
18	Evaluate the risks of selective breeding in modern agriculture and medicine, including practical and ethical implications	Risks: inbreeding, lack of genetic diversity that could cause a failure to meet the unknown needs of the future or put all organisms at risk of the same disease/ environmental condition.

SB5 Core knowledge

No	Question	Answer
1.	How does the World Health Organisation	A state of complete physical, mental and social well-
	define health?	being, not merely an absence of disease or infirmity.
2.	What is a disease?	A problem with the structure or function of the body
2.		that is not the result of an injury.
3.	What is a communicable disease?	A disease caused by pathogens that can pass from
		an infected person to other people.
4.	What is a non-communicable disease?	A disease which is not passed from person to
		person.
5.	What factors can interact to cause a non-	1. Genetics
	communicable disease?	2. Malnutrition
		3. Lifestyle
6.	Give 3 lifestyle factors and the non-	1. Exercise and diet – obesity and malnutrition
	communicable diseases they may cause.	2. Alcohol – liver disease / cirrhosis
		3. Smoking – cardiovascular disease
7.	Why does the presence of one disease lead	The first disease may:
	to a greater chance of getting another	 Harm the immune system
	disease?	 Damage the body's natural defences
		 Stop an organ system from working effectively
8.	What body measurements and calculations	BMI = Weight (kg)
	can be taken to measure overall health?	height (m ²)
		Hip:waist ratio
9.	How can cardiovascular disease be	1. Life-long medication
	treated?	2. Surgical procedures
		3. Lifestyle changes
10.	What is a pathogen?	An organism that causes a communicable disease
11.	What type of organisms are pathogens?	Bacteria, fungi, viruses and protists.
12.	Name and describe two common bacterial	1 Cholera (bacteria) causes diarrhoea
	infections.	2 Tuberculosis (bacteria) causes lung damage
13.	Name and describe a common fungal infection.	Chalara ash dieback (fungi) causes leaf loss and
14.	Name and describe a common protist	Malaria causes damage to blood and liver
	infection.	
15.	Name and describe a common viral	HIV destroys white blood cells, leading to the onset
	infection.	of AIDS
16.	How are tuberculosis (bacteria) pathogens spread?	Airborne – through coughs and sneezes.
17.	How could the spread of tuberculosis be reduced or prevented?	Good hygiene

18.	How are Chalara ash dieback (a fungus)	Airborne – as spores
19.	pathogens spread? How could the spread of Chalara ash	Improve biosecurity- not importing or moving
19.	dieback be reduced or prevented?	infected trees or soil
20.	How are cholera (bacteria) pathogens spread?	Through untreated water
21.	How could the spread of cholera be reduced or prevented?	Good hygiene, improving cleanliness of water supplies
22.	How are malaria (a protist) pathogens spread?	Animal vectors (e.g. mosquito)
23.	How could the spread of malaria be reduced or prevented?	Killing mosquitoes, use of mosquito nets
24.	How are STIs (sexually transmitted diseases) transmitted?	By contact with sexual fluids (vaginal fluid and semen)
25.	Name two STIs and say what organism causes them.	 Chlamydia (bacteria) HIV (virus)
26.	How can the spread of STIs be reduced or	1. Screening the population for STIs
	prevented?	2. Screening donated blood for STIs
		3. Use of condoms during sex
		4. Preventing drug users from sharing needles
27.	List 3 physical barriers which provide us	1. Mucus in the nose
	with protection from pathogens.	2. Cilia in the trachea
		3. Skin
28.	List 3 chemical barriers which provide us	1. Lysozymes in tears
	with protection from pathogens.	2. Saliva and vaginal fluid
		3. Hydrochloric acid in the stomach
29.	What type of protein do pathogens have on their surface?	Antigens
30.	What type of lymphocyte will be activated	One which has antibodies which fit with the
	by a pathogen getting into the body?	pathogen's antigens.
31.	Describe 2 ways lymphocytes respond to	1. Divide to produce many identical
	an antigen.	lymphocytes.
		2. Secrete antibodies which destroy the
		pathogen.
32.	What are memory lymphocytes? What is their role?	Lymphocytes which stay in the blood to respond to a second infection.
		The secondary response is much faster and you are
		immune to the pathogen.
33.	What is a vaccine?	A drug which triggers immunity to a pathogen. It
		contains an inactive form of the pathogen.
34.	What are the advantages to immunisation?	Protects an individual from a particular disease for
		many years.
		Some diseases are eradicated
		Reduces risk of epidemics
		Less chance of long term illness as a result of the
		infection
		Herd immunity protects those not immunised
		Using a vaccine is cheaper than treating a very ill
		person
35.	Name a disadvantage to immunisation.	Some chance of side effects- some side effects can
		be severe.

36.	What is herd immunity?	When the <u>majority of people in a group are</u> <u>immunised</u> , this <u>provides protection to the few</u> people who are not by reducing the chance of coming into contact with an infected person.
37.	Why are antibiotics useful? How do they work?	They are used to treat bacterial infections. <u>They kill the bacteria</u> cells or <u>inhibit their production</u> <u>by interrupting cell wall synthesis</u> , but do not harm the organism being treated.
38.	List the stages in the development of new drugs, including antibiotics.	 Discovery Development Preclinical testing Clinical testing

SB6 Core knowledge

No	Question	Answer
1	What is a producer?	An organism that makes its own food using
		photosynthesis.
2	What is biomass?	The total mass of an organism after drying.
3	Describe photosynthesis in plants and algae	An endothermic reaction that uses light energy to
		react carbon dioxide and water to produce glucose
		and oxygen
4	What is the equation for photosynthesis	Carbon dioxide + water \rightarrow glucose + oxygen
5	List three limiting factors of photosynthesis	Temperature, light intensity and carbon dioxide concentration
6	How does temperature limit the rate of	If the temperature is not high enough, the rate of
	photosynthesis?	photosynthesis will not increase as the enzymes
		responsible cannot perform at their optimum rate.
7	What is the effect of increasing	The rate of photosynthesis will increase up to
	temperature on the rate of	a maximum rate at the optimum temperature.
	photosynthesis?	 At higher temperatures the rate will decrease
		due to denaturation of the enzymes that carry
		out photosynthesis.
8	How does carbon dioxide affect the rate of	As the concentration of carbon dioxide increases, the
	photosynthesis?	rate of photosynthesis also increases.
9	How does light intensity limit the rate of	If the light intensity is not high enough, there will not
10	photosynthesis?	be enough energy for photosynthesis
10	How can the effect of light intensity on rate	The rate of oxygen production by a plant can be
11	of photosynthesis be investigated?	measured at different light intensities.
11	How does the rate of photosynthesis	The rate of photosynthesis is directly proportional to
12	change with light intensity?	light intensity.
12	How does the rate of photosynthesis change with distance from a light source?	The rate of photosynthesis is inversely proportional to the distance from the light source-following the
		inverse square law.
13	How is the structure of a root hair cell	a) Large surface area to volume ratio
15	adapted to absorb water and mineral ions?	b) Maximises contact with the soil
		c) Thin cell walls to allow water molecules and
		mineral ions through quickly
14	How are xylem adapted to their function in	Dead cells with no cytoplasm so lots of room
	the plant?	inside.

15	How are phloem adapted to their function	 No walls between cells so they form a hollow tube. Thick walls made of lignin so they don't burst. Companion cell use energy to pump sucrose inside
	in the plant?	 inside Sieve tubes made of cells with holes in the ends for liquids to move through No nucleus and little cytoplasm in sieve tube cell so lots of room inside
16	What is transpiration?	The transportation of water molecules through the plant.
17	Describe the structure and function of the stomata	Stomata are pores in the underside of leaves that allow the diffusion of gases in and out of the leaf. Guard cells around the pore open and close it.
18	How is sucrose transported around the plant by translocation?	In phloem. Living companion cells use energy to pump sucrose inside sieve tubes. Increasing pressure causes sucrose solution to flow around plant.
19	How is the structure of a leaf adapted for photosynthesis and gas exchange?	 a) Large surface area to absorb sunlight b) Palisade layer has lots of chloroplasts c) Xylem vessels supply water to cells d) Air spaces inside leaf allow carbon dioxide to diffuse into cells e) Stomata in underside allow gases to diffuse in and out
20	List environmental factors that could affect the rate of water uptake by a plant	Light intensity, air movement (wind), temperature
21	How is the rate of transpiration calculated?	Measure the distance the bubble in the potometer has moved in (e.g.) 20 minutes: <u>Distance moved (mm)</u> = rate of transpiration (mm/min) Time taken (min)

Unit 7 Animal coordination, control and homeostasis – core questions

1.	Which system contains a collection of	The endocrine system
	glands which produce hormones?	
2.	Which gland produces insulin?	The pancreas
3.	Which gland produces adrenaline?	The adrenal glands
4.	State 3 ways in which adrenaline prepares	 Increased heart rate
	the body for fight or flight	 Increased blood flow to muscles
		Increased blood pressure
		 Stimulates liver to convert glycogen to glucose
5.	Where is TRH produced?	Hypothalamus
6.	Which gland releases TSH?	 The pituitary gland
7.	Which gland produces Thyroxine?	Thyroid gland
8.	How is the regulation of thyroxine	As thyroxine levels increase TRH production is decreased
	production an example of negative	
	feedback?	
9.	State 2 hormones which control the	FSH
	menstrual cycle	Oestrogen
		LH
		Progesterone

10. What is ovulation?	When an egg cell is released from an ovary
11. On what days of the menstrual cycle does	Days 1-5
menstruation occur?	
12. When does ovulation usually happen?	Day 14
13. (H) What does FSH do?	Stimulates growth and maturation of egg follicle
14. (H) The surge in LH at day 14 triggers	Ovulation (release of egg)
15. Towards the end of the cycle the fall in	Menstruation
oestrogen and progesterone trigger	
16. What does hormonal contraception	The maturation of the egg follicle
prevent?	
17. Name 2 methods of contraception apart	Condom
from the pill	Diaphragm
18. Which hormone is released in response to	Insulin
high blood glucose?	
19. Which hormone is released in response to	Glucagon
low blood glucose?	
20. How is glucose stored in the liver and	As glycogen
muscle cells?	
21. What causes Type 1 diabetes?	Insulin is not produced from the pancreas
22. How can type 1 diabetes be treated?	Injecting insulin
23. What causes Type 2 diabetes?	Cells do not respond to the effect of insulin
24. How can Type 2 diabetes be treated?	Exercise; healthy diet; Medication
25. Describe negative feedback	An increase in one factor causes a decrease in another
	factor (and vice versa)

CB8

1	Which gas do we need for respiration?	Oxygen
2	Which gas is a waste product of respiration?	Carbon Dioxide
3	Where are food molecules absorbed into the blood?	Small intestine
4	What is urea?	A poison produced in your body when it breaks down amino acids
5	State 3 ways the alveoli are adapted for gas exchange	 Large surface area to volume rate Thin alveolus cell wall Thin capillary cell wall Lots of capillaries
6	State 3 factors affecting the rate of diffusion	 Surface area Concentration gradient Diffusion distance
8	What is the function of red blood cells?	To transport oxygen
9	What is the function of white blood cells?	They are part of the immune system and help defend the body against infection
10	What is transported in plasma?	Transports dissolved substances around the body including glucose, hormones, water, urea, carbon dioxide
11	What is the function of platelets?	Help the blood to clot
12	How are arteries adapted to their function?	Thick, elastic walls to cope with high pressure

How are veins adapted to their	Thin flexible walls,
function?	Valves to stop low pressure blood flowing
	backwards
	Very thin walls (only one cell thick) which allows for
function?	rapid diffusion of substances into and out of the
	blood.
What is the function of valves?	To prevent the backflow of blood into the heart
Which side of the heart pumps	The left side
oxygenated blood around the body?	
Which side of the heart is thicker?	The left ventricle
Put these words in order to describe	Vena cava \rightarrow right atrium \rightarrow right ventricle \rightarrow
the flow of blood into, around, and	pulmonary artery $ ightarrow$ pulmonary vein $ ightarrow$ left atrium
out of the heart, starting at the vena	\rightarrow left ventricle \rightarrow aorta
cava:	
Vena cava; left ventricle, right	
ventricle, pulmonary vein, aorta,	
right atrium; pulmonary artery; left	
atrium.	
What does exothermic mean?	Energy is given out
Write the word equation for aerobic	glucose + oxygen → carbon dioxide + water (+
respiration	energy)
Write the word equation for	glucose \rightarrow lactic acid
anaerobic respiration	-
-	Cardiac output = stroke volume x heart rate
-	
	function? How are capillaries adapted to their function? What is the function of valves? Which side of the heart pumps oxygenated blood around the body? Which side of the heart is thicker? Put these words in order to describe the flow of blood into, around, and out of the heart, starting at the vena cava: Vena cava; left ventricle, right ventricle, pulmonary vein, aorta, right atrium; pulmonary artery; left atrium. What does exothermic mean? Write the word equation for aerobic respiration Write the word equation for

CB9 Ecosystems and Material Cycles – Core Questions

1.	All the organisms that live and interact in an ecosystem form a	Community
2.	A community is made up of Of different species	Populations
3.	What does interdependence mean?	Interdependence is the dynamic relationship between all living things
4.	State 4 abiotic factors	 Temperature Light Water Pollutants
5.	State 2 biotic factors	CompetitionPredation
6.	What is a parasite?	An organism whose survival depends on the presence of another species from which it takes food and other resources
7.	Give 4 examples of parasitism	 Fleas head lice tape worms mistletoe
8.	What does the term 'mutualism' mean?	Organisms that exist in a close, mutually beneficial relationship where both aid the survival of the other.
9.	Give 4 examples of mutualism	Oxpeckers that clean other speciesCleaner fish

		Nitrogen fixing bacteria
		Chemosynthetic bacteria in tube worms in deep
		sea vents
12.	How does fish farming help aquatic	It prevents overfishing of wild fish
	ecosystems?	
13.	State 2 problems with fish farming	Fish are kept in small space, therefore:
		 Un-eaten food and faeces sinks to bottom of
		water and can affect wild organisms that live
		there.
		Parasites and disease can spread more easily
14.	What is a non-indigenous species?	A species that is not natural to that environment
15.	How can the introduction of non-	It can cause problems for the native species that
	indigenous species affect an ecosystem?	already exist in the ecosystem
16.	What can happen in an aquatic system if	Eutrophication
	too much fertiliser is used on the soil	
17.	State the 2 nutrients found in fertiliser	Nitrate
	that can cause eutrophication	Phosphate
18.	How does eutrophication cause a	The algal bloom blocks sunlight. Plants die and bacteria
	problem?	builds up in the water. The bacteria uses up all the
		oxygen and all living things in the ecosystem die.
19.	How does reforestation benefit	It increases the number of species in the area
	biodiversity?	
20.	What is conservation?	When an effort is made to protect a rare or endangered
		species or habitat
21.	What is food security?	Food security is having access to safe and healthy food
		at all times
22.	State 2 biological factors which could	 Increasing human population
	affect food security	 Increasing animal farming
		 Impact of pests and pathogens
		• Environmental change caused by human activity
		Sustainability issues
23.		Carbon dioxide + Water \rightarrow Glucose and Oxygen
	What is the equation for photosynthesis?	Light is used to do this
24	What is the word equation for	Glucose and Oxygen → Carbon dioxide + Water +
24.	respiration?	(Energy)
	Which common greenhouse gas is	
25.	released in combustion that is also	Carbon dioxide
	released in respiration?	
	Which gas comprises nearly 80% of our	
26.	atmosphere but cannot be used directly	Nitrogen
	by plants and animals?	5
	Where do nitrogen fixing bacteria live	The live in the soil or root nodules and they can 'fix'
27.	and what do they do?	nitrogen gas from the air
	Which weather phenomenon can also	
28.	convert nitrogen gas into nitrates?	Lightning
_	What is the role of decomposers? Give	Break down dead animals and plants
29	two examples.	Fungi, worms
	What can nitrifying bacteria in the soil	
30.	do?	Convert ammonia into nitrates
31.	Why do plants need nitrates?	To make proteins for growth
		Convert nitrates to nitrogen gas and return it to the
32.	What is the role of denitrifying bacteria?	atmosphere.
		aunosphere.

33.	Identify 2 processes which cause water to change state in the water cycle	EvaporationCondensation
34.	What is desalination?	Obtaining fresh water from the sea or salty water
36.	State 3 factors that affect the rate of decomposition of food	TemperatureWater contentOxygen

Y10 chemistry

Topic 1- Key concepts

1	What is an atom?	The smallest particle that has the properties of a chemical element.
2	Describe the structure of an atom.	A nucleus containing protons and neutrons, surrounded by electrons in shells.
3	What are the relative charges and masses of	Protons: mass 1, charge +1
	protons, neutrons and electrons.	Neutrons: mass 1, charge 0
		Electrons: mass almost zero, charge -1.
4	Why do atoms contain the same number of protons and electrons?	Atoms are neutrally charged so they must have the same number of positive particles (protons) as negative particles (electrons)
5	How would you describe the size of the nucleus relative to the rest of the atom?	Very small
6	Where is most of the mass of the atom found?	In the nucleus.
7	What is the mass number of an element?	The total number of protons and neutrons.
8	What is the atomic number of an element?	The number of protons.
9	The number of which particle is unique to an element and gives it its identity?	Protons
10	If an atom contains 12 protons, how many electrons will it have?	12.
11	If an atom has a mass number of 23 and an	11 protons
	atomic number of 11, how many protons,	11 electrons
	neutrons and electrons does it contain?	23-11 = 12 neutrons
12	What is an isotope?	Two or more atoms of the same element (the same number of protons) but with a different number of neutrons.
13	What is the relative atomic mass, (A _r)?	The relative mass of an atom compared to the mass of an atom of carbon-12.
14	Why do some elements have a relative atomic	The relative atomic mass is an average mass of all the
	mass that is not a whole number.	isotopes that make up the element.
15	What is the formula for calculating relative	(% abundance x atomic mass) + (% abundance x atomic mass) = relative atomic mass
	atomic mass of an element from the relative	100
	mass and abundance of its isotopes?	

The periodic table

16	How did Mendeleev arrange the elements known at the time into a periodic table?	By using the mass number and the properties of the elements and the properties of their compounds of the elements.
17	How did Mendeleev use his table?	To predict the existence and properties of some elements that were still to be discovered.

18	Why does Mendeleev's method of organising elements in order of increasing atomic mass not always work?	The relative abundancies of some elements isotopes means they can be placed in the wrong place.
19	How are elements in the modern periodic table arranged?	In order of increasing atomic number in rows called periods and elements with similar properties are placed in the same vertical columns called groups.
20	Where are the non-metals found in the periodic table?	At the top on the right hand side.
21	What do all elements in the same row of the periodic table have in common?	They have the same number of shells of electrons.
22	What do all elements in the same column of the periodic table have in common?	They have the same number of electrons in their outer shell (and therefore have similar chemical properties).

Ionic Bonding

23	What is an ion?	A charged atom or group of atoms.
24	Describe how an ionic bond is formed.	A metal loses electron(s) to a non-metal. This results in the metal becoming a positively charged ion (cation) and the non-metal a negatively charged ion (anion). These oppositely charged ions then attract.
25	Is a cation positively or negatively charged?	Positive
26	Is a anion positively or negatively charged?	Negative
27	What charge do the ions have when formed from elements in group: a. 1 b. 2 c. 6 d. 7	a. + b. 2+ c. 2- d
28	What do the compound endings: 1) ide 2) ate mean?	 ide – a compound of only the named substances ate – a compound of the named substances and oxygen
29	What is the formula of the compounds formed from: a. Mg ²⁺ and Cl ⁻ b. Na ⁺ and O ²⁻ ?	a. MgCl ₂ b. Na ₂ O
30	Describe the structure of ionic substances.	Ionic substances are a regular arrangement of oppositely charged ions held together in a lattice structure by strong electrostatic forces.
31	How many electrons does Mg ²⁺ have? Mg has an atomic number of 12	10
32	Name and explain two physical properties of covalent, simple molecular compounds.	 They have low melting and boiling points because there are weak intermolecular forces of attraction between molecules. They do not conduct electricity because the molecules are not charged.

Covalent Bonding

33	Describe what happens in covalent bonding?	Two non-metals overlap their outer electron shells and share at least one pair of electrons.
34	What does covalent bonding result in the formation of?	Molecules

35 Name and explain two physical properties of ionic compounds.	 They have high melting and boiling points because there are strong electrostatic forces holding the oppositely charged ions in place, therefore a lot of energy is needed to separate the ions. They can conduct electricity when molten or in aqueous solution (dissolved in water) because the ions are free to move and carry their charge.
---	---

Types of substance

36	1.	 Each carbon atom is held in place by 4 strong covalent bonds to other carbon atoms. This arrangement is replicated throughout the whole structure creating a giant structure. Each carbon atom is held in place by 3 strong covalent bonds. This creates flat layers of carbon atoms which stack on top of each other. The unused outer electron on each carbon atom sits between these layers and is delocalised (free to move).
37	Why is diamond used in cutting tools?	Diamond is very hard because all the carbon atoms are joined by 4 strong covalent bonds.
38	Why does diamond have such a high melting point?	In diamond each carbon atom is held in place by 4 strong covalent bonds and it takes a lot of energy to break these bonds.
39	Why does graphite conduct electricity?	In graphite each carbon forms 3 bonds, this leaves one electron left over from each carbon atom which sits between the graphite layers and is free to move and carry a charge.
40	Why can graphite act as a lubricant?	The layers of carbon atoms in graphite are only very weakly joined and are therefore free to slide past each other.
41	What are fullerenes? Explain its properties in terms of its structure and bonding.	C_{60} is one example where 60 carbons bond together covalently making a structure that looks like a football. These are simple molecules and behave as such. It is possible to 'dope ' the C_{60} with metal atoms and it then becomes a superconductor.
42	What is graphene? Explain its properties in terms of its structure and bonding.	Graphene is like graphite, just 1 layer thick. It therefore conducts electricity and for its thickness is very strong.
43	Describe polythene's structure	Polythene is an example of a polymer. It is a large molecule containing chains of carbon atoms surrounded by hydrogen.
44	Describe the bonding in metals	All metals form positive ions and their outer electrons are delocalised and sit between the metal ions (forming a 'sea of electrons').
45	Why do metals conduct electricity?	There are free electrons in the metallic structure that can move.
46	Why are metals malleable?	They bend because the ions can slide over one another.
47	Why is it difficult to represent models of compounds on paper?	Compounds are normally 3 dimensional and contain different sized atoms. This can give them particular shapes that are hard to draw clearly in 2 dimensions (on paper).
48	What are the properties of most metals?	Shiny solid, high melting points, high density and good conductors of electricity.

Calculations involving masses

49	What is an empirical formula?	The simplest ratio of the elements in a compound.
50	What is the law of conservation of mass?	During any chemical reaction no particles are created or destroyed. So, the overall mass of the reactants must equal the mass of the products.
51	What unit do we use for concentration?	G dm ⁻³ (grams per decimetre cubed)
52	What is 1 mole of particles?	The Avogadro constant (6.02 x 10 ²³ particles).
53	What is the formula to calculate moles?	Moles = Mass/Relative formula mass

Topic 2- States of matters and mixtures

States of matter

54	What are the 3 states of matter?	Solid, liquid and gas
55	Name the interconversion between the: 1. Solid to the liquid state 2. Liquid to the gaseous state 3. gaseous state to the liquid state 4. Liquid to the solid state	 Melting Evaporating (or if heated to boiling point – Boiling) Condensing Freezing
56	Describe how the particles arrangement, movement and energy changes during melting.	The particles energy increases on heating causing the vibrations between particles to increase to an extent that they break free from their regular arrangement and start moving over one another.
57	Describe how the particles arrangement, movement and energy changes during melting.	The particles energy decreases on cooling causing the particles to slow down and become attracted to other particles.

Methods of separating and purifying substance

58	What is the difference between a pure substance and a mixture?	A pure substance is made of just one thing whereas a mixture is made of more than one substance which are not chemically joined.
59	 What type of mixtures can be separated by each of these techniques? 1. Simple distillation 2. Fractional distillation 3. Filtration 4. Crystallisation 5. Paper chromatography 	 A dissolved solid where you want to keep the liquid or 2 liquids with very different boiling points. A large sample of a mixture of liquids with similar boiling points An insoluble solid and a liquid. A dissolved solid where you do not want the liquid. A small sample of a mixture of liquids.
60	What is Chromatography?	A separating technique used to separate mixtures of soluble substances by running a solvent (mobile phase) through the mixture on the paper (stationary phase) which causes the substances to move at different rates over the paper.
61	How can you use paper chromatography to identify a substance?	Each substance will run a specific distance up the paper and have its own unique R_f .
62	In chromatography, define the R _f value.	R _f = <u>distance moved by the component</u> distance moved by the solvent
63	How can ground water be made potable?	Sedimentation, filtration and chlorination

64	How can sea water be made potable?	Distillation.
65	Why must water used in analysis not contain any dissolved salts?	Dissolved salts could cause an analysis to give a false positive result. In other words you might get a positive result for something that isn't really there.

Topic 3 Chemical change

Acids

66	What are acids and alkalis sources of?	Acids – hydrogen i Alkalis – hydroxide			
67	What are the colour changes of 2				
67	What are the colour changes of? 1. Litmus		Acid	Alkali	
		Litmus	red	blue	
	2. Methyl orange	Methyl orange	red	yellow	
	3. Phenolphthalein	Phenolphthalein	colourless	pink	
<u> </u>	With acid and alkali?	The bisk suth second			
68	What is the link between hydrogen ion	The higher the concentration of hydrogen ions the lower the pH (a stronger acid). As the hydrogen ion			
	concentration and pH?				
		concentration increases by a factor of 10, the pH of the solution decreases by 1. The higher the concentration of			
					ion of
<u> </u>		hydroxide solution	is the higher ti	перн.	
69	When calcium hydroxide is added slowly to	рН			
	hydrochloric acid the pH of the resulting solution		(
	changes. What would the graph of this look like?		1		
			J		
			1		
			1		
			/		
				-	
		Quantity of calcium hydroxide			
70	What pH could a concentrated acid have?	Anything between 1 and 6. Acid concentration refers to			
		the dilution with water. A strong acid can still have a lot of hydrogen ions in solution even when it is of a weak			
			n solution eve	n when it is of a we	eak
		concentration. Strong acids will always have low pH regardless of the			
71	Which would have a pH of 1?	-	lways have lov	v pH regardless of	the
	 0.25M Sulphuric acid (a strong acid) 	concentration.			
	10M Ethanoic acid (a weak acid)				
72	What is a base?	It is a substance th	nat can react w	vith an acid to mak	e a
		salt and water.			
73	What is an alkali?	A soluble base.			
74	What type of reaction is it when an acid reacts	Neutralisation			
	with a base?				
75	What are the products of the following	1. Salt + hyd	rogen		
	neutralisation reactions?	2. Salt + wat	-		
	1. Metal + acid →	3. Salt + wat	er		
	2. Metal oxide + acid \rightarrow	4. Salt + wat	er + carbon die	oxide	
	3. Metal hydroxide + acid \rightarrow				
	4. Metal carbonate + acid \rightarrow				
76	What is the chemical test for?	1. Lit splint g	ives a squeakv	, pop.	
-	1. Hydrogen		• • •	through limewate	er
	2. Carbon dioxide	turns it mi			
77	Explain why water is produced when an acid	The hydrogen ions		acid react with the	e
	reacts with an alkali?	hydroxide ions (OI			-
			. ,		

78	When preparing a soluble salt from an acid an insoluble reactant how do you ensure the salt is pure?	 Use excess insoluble reactant to neutralise all the acid. Filter the resulting mixture to remove the excess reactant. 	
79	How do you prepare a soluble salt when both the reactants are soluble?	Titration is used to ensure the reactants are mixed in the correct proportions.	
80	How would you prepare a sample of pure, dry hydrated copper sulfate crystals starting from copper oxide.	 Add excess copper oxide to sulfuric acid and place in a water bath to gently heat. Filter the mixture to remove excess copper oxide. Evaporate the mixture, this can be heated to start with but it must be left to evaporate at room temperature to produce hydrated crystals. 	
81	How do you carry out an acid-alkali titration, using burette, pipette and a suitable indicator, to prepare a pure, dry sample of sodium chloride?	 Fill a burette with hydrochloric acid. Fill a burette with hydrochloric acid. Measure 25 cm³ of sodium hydroxide using a pipette and place in a conical flask. Add a few drops of phenolphthalein indicator. Place the conical flask on a white tile underneath the burette. Run in hydrochloric acid fairly quickly at first whilst continually stirring. When the neutralisation point is approaching start to add the acid drop wise. Stop adding the acid the moment the indicator goes clear. Repeat the titration 2 further times and average results. Carry out titration one final time, this time without indicator to ensure the salt produced is pure. Stop adding acid when the average quantity previously identified has been added. 	
82	Are the common sodium, potassium and ammonium salts soluble or insoluble?	Soluble	
83	Are nitrates soluble or insoluble?	Soluble	
84	Are common chlorides soluble or insoluble? And what is the exception to the rule?	Soluble, except silver chloride and lead chloride.	
85	Are common sulfates soluble or insoluble? And what is the exception to the rule?	Soluble, except lead sulphate, barium sulphate and calcium sulphate.	
86	Are common carbonates and hydroxides soluble or insoluble? And what is the exception to the rule?	Soluble, except sodium, potassium and ammonium.	
87	What is a precipitate?	A solid formed from two reacting solutions.	
88	What is the name of the insoluble precipitate formed when lead nitrate reacts with potassium chloride?	Lead chloride	
89	How do you prepare a pure, dry sample of an insoluble salt?	Mix reacting solutions together in order to get the precipitate, then filter the precipitate out of the solution, wash it with distilled water and dry it.	

Electrolytic processes

90	What is an electrolyte?	An ionic compound in either the molten state or
		dissolved in water.

91	What is electrolysis?	A chemical process that decomposes an electrolyte using electrical energy from a direct current (DC) supply.
92	What are positively charged ions called?	Cations
93	What are negatively charged ions called?	Anions
94	What is the positive electrode called?	Anode
95	What is the negative electrode called?	Cathode
96	How do the ions move during electrolysis?	The cations migrate to the cathode. The anions migrate to the anode.
97	 What products are formed in the electrolysis of the following electrolytes: 1. Copper chloride solution 2. Sodium chloride solution 3. Sodium sulphate solution 4. Water acidified with sulphuric acid 5. Molten lead bromide 	Anode Cathode Left in solution 1 Chlorine Copper 2 Chlorine Hydrogen 3 Oxygen Hydrogen 4 Oxygen Hydrogen 5 Bromine Lead
98	What is the cathode half equation when water is electrolysed?	$2H^+ + 2e^- \rightarrow H_2$
99	What is the anode half equation when water is electrolysed?	$20^{2-} \rightarrow 0_2 + 4e^{-}$

Topic 4- Extracting metals and equilibria

Obtaining and using metals

100	Define oxidation and reduction.	Oxidation is loss of electrons and reduction is gain of electrons.
101	When water is electrolysed are the hydrogen ions oxidised or reduced?	Reduced
102	Does oxidation happen at the anode or cathode?	Anode
103	When purifying copper using electrolysis would you make the impure copper the anode or the cathode?	Anode
104	Write the half equation for the formation of copper at the cathode.	$Cu^{2+} + 2e^- \rightarrow Cu$
105	Magnesium produces small bubbles of gas when placed in water; it reacts rapidly with steam and acid. Lithium bubbles fizzes on the surface of water. Which is more reactive?	Lithium.
106	What is a displacement reaction?	A redox reaction in which a more reactive element displaces a less reactive element from its compound. Both metals and non-metals take part in displacement reactions.
107	In metal displacement reactions, is the reactive metal oxidised or reduced?	Oxidised
108	Where are most metals obtained from?	Ores found in the Earth's crust.
109	Name a metal that is not extracted from an ore and explain why.	Gold because it is so unreactive it doesn't combine with oxygen in the environment.
110	When metals are extracted are ores oxidised or reduced?	Reduced

111	Describe how iron is extracted from its ore.	Iron ore (iron oxide) is heated with carbon (the carbon displaces the iron. The iron is reduced – loses its oxygen to the carbon).
112	Describe how aluminium is extracted from its ore.	Aluminium is extracted by electrolysis.
113	Explain why aluminium is extracted in this way, and not by simply heating it with carbon.	Aluminium is a reactive metal. Reactive metals bond strongly to the other elements in their ores. It requires a lot of energy to break these chemical bonds. Electrolysis can provide large amounts of electrical energy to separate the metal from the other elements in the ore. All reactive metals have to be extracted by electrolysis. The disadvantage is that this method is expensive.
114	Why is iron not extracted from its ore using electrolysis?	It is cheaper to displace it with carbon.
115	How does the phyto extraction of copper work?	Some plants absorb copper compounds through their roots, the plant is then burnt and the copper extracted from the ash.
116	What is bioleaching?	A method of extracting copper that involves bacteria absorbing copper compounds. The bacteria then produce solutions called leachates which contain copper compounds from which the copper can be extracted.
117	Would you expect a metal low down the reactivity series to be susceptible to oxidation?	No, unreactive metals are much less likely to react with oxygen.
118	Why do we recycle scrap metal?	 It can often be cheaper to recycle rather than extract new metal from its ore. Recycling cuts waste which could otherwise harm the environment. Preserves the remaining raw materials on the planet.
119	What does a lifetime assessment of a product involve?	Evaluating the effect on the environment of: 1. Manufacturing 2. Using 3. Disposing

Reversible reactions and equilibria

120	What does this symbol mean? ≓	It shows a reaction is reversible
121	What is meant by the term 'dynamic equilibrium'?	A reversible reaction is said to be in dynamic equilibrium when the rate of the forward reaction is equal to the rate of the backward reaction.
122	How can you change the equilibrium of a reversible reaction?	By changing the conditions, for example temperature and pressure.
123	What is the equation for the Haber process?	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
124	Where are the reactants obtained from in the Haber process?	The nitrogen is extracted from air and the hydrogen is obtained from natural gas.
125	What is the chemical formula for ammonia?	NH ₃
126	What are the conditions used in the Haber process?	 temperature 450 °C pressure 200 atmospheres iron catalyst
127	How does increasing the temperature affect the yield of ammonia?	The production of ammonia is exothermic so increasing the temperature reduces the yield.

128	If increasing the temperature reduces the yield of ammonia why is a temperature of 450 °C used?	450 °C is a compromise, the temperature is raised to increase the rate of reaction even though it decreases the yield.
129	How does increasing the pressure affect the yield of ammonia?	4 molecules of reactants are needed to make 2 molecules of ammonia. If the pressure is raised more ammonia is produced because that would reduce the number of particles present.
130	How does adding a catalyst affect the yield of ammonia?	It does not affect the yield it just increases the rate.
131	 How would the position of a dynamic equilibrium be affected by? 1. temperature? 2. pressure? 3. concentration? 	 Increasing the temperature will move the dynamic equilibrium in the direction of the endothermic reaction. Increasing the pressure will move the dynamic equilibrium towards the side where there are less gas molecules. Increasing the centration of a substance will move the equilibrium to reduce the concentration of that substance.

Y11 Chemistry

Topic 6- Groups in the periodic table

Group 1

1	What do we call group 1, group 7 and group 0 in the periodic table?	The alkali metals, the halogens and the noble gases.
2	 In terms of electronic configuration, what do all the elements in: 1. Group 1 have in common? 2. Group 7 have in common? 3. Group 0 have in common? 	 They have: 1. 1 electron on their outer shell 2. 1 electron is needed to complete their outer shell. 3. A full outer shell of electrons.
3	How are the alkali metals different from transition metals?	 They are soft (can be cut with a knife). They have comparatively low melting points.
4	Describe the reaction of sodium with water.	 The metal reacts and moves around the surface of the water. The reaction gives off a gas. The product of the reaction is soluble in the water.
5	What two products are formed when alkali metals are added to water?	A hydroxide and hydrogen gas.
6	State the order of reactivity in group one and explain it.	Reactivity increases as you go down the group. This is because the outer electron is further away from the nucleus and is therefore more easily lost.

Group 7

7	What are the colours and physical states of the	Fluorine is a pale yellow gas. Chlorine is a yellow/green
	halogens at room temperature?	gas. Bromine is a brown liquid. Iodine is a grey solid.
8	What is the pattern in:	1. Boiling point increases
	1. Boiling point	2. Colour intensity increases
	2. Colour intensity	3. Reactivity decreases
	3. Reactivity	
	As you go down the halogen group?	

9	What is the test for chlorine?	Chlorine turns damp litmus paper red and then bleaches it.
10	What is formed when halogens react with hydrogen?	Hydrogen halides. These can dissolve in water to from acids e.g. HCl, hydrogen chloride dissolves in water to form hydrochloric acid.
11	What is formed when halogens react with metals?	Metal halides. E.g. 2Fe + 3Cl ₂ = 2FeCl ₃ (iron(III)chloride)
12	State the order of reactivity of the halogens and explain it.	Reactivity decreases as you go down the group.
13	If chlorine is added to sodium bromide solution what happens?	A displacement reaction takes place forming sodium chloride solution and bromine. This is because the chlorine is more reactive than the bromine.
14	When chlorine reacts with sodium bromide what type of reaction is it?	Displacement reaction which is a redox reaction.
15	When chlorine reacts with sodium bromide, what is oxidised and what is reduced? Explain your answer in terms of electrons.	The chlorine will gain electrons and therefore be reduced. The bromide ion will lose electrons and is therefore oxidised.
16	Why do the halogens become less reactive as you go down the group?	The halogens all need to gain an electron to complete their outer shells. The positive nucleus attracts the electron the halogens need to fill the outer shell. The halogens at the top of the group have less shells so the attractive force of the nucleus is much stronger as the gap is closer which makes them more reactive.

Group 0

17	Why are the noble gases unreactive?	They already have a full outer shell of electrons.
18	What are the properties of the noble gases?	 Inertness (so used in welding and filament lamps). Low density (used in balloons). non-flammability.
19	What is the trend in density and boiling point as you go down the noble gas group?	Both the densities and the boiling points of the noble gases increase as you go down the group.

Topic 7 – Rates of reaction and energy changes

Rates of reaction

20	How could you monitor the rate of a reaction?	By looking at how quickly a product like a gas is produced, this could be done by collecting the gas in a syringe. Alternatively, by seeing how quickly a reactant is used up, this could be done by monitoring the mass of solid reactant.
21	If a reaction is to occur what 2 things need to happen between reacting particles?	The particles must collide and the collision must have enough energy.
22	Explain why increasing the temperature speeds up a reaction.	It gives the particles more energy so they collide more often and the collisions have more energy.
23	Explain why increasing the concentration of a solution speeds up a reaction.	It means there are more particles present so it will increase the number of collisions.
24	Explain why increasing the pressure on reactions involving gases speeds up the rate of reaction.	Increasing the pressure increases the number of gas particles present in a certain volume. This increases the number collisions between reacting particles, which increases the rate of reaction.
25	Explain how breaking up a solid reactant increases the rate of reaction.	Breaking up a solid increases the surface area. This means that there is a greater area of solid exposed for other particles to collide with. This increases the likelihood of a successful collision and therefore speeds up the reaction.

26	What happens to the rate as a reaction progresses and what would a rate of reaction graph look like?	Reactions start quickly and slow down as they progress. A rate curve will start off steep and the gradient will continually decrease to reflect the changing rate.
27	What is a catalyst?	A catalyst is a substance that speeds up the rate of a reaction without altering the products of the reaction, being itself unchanged chemically and in mass at the end of the reaction.
28	How does a catalyst speed up a reaction?	A catalyst provides an alternative route which requires less activation energy.
29	What are enzymes and what are they used for?	Enzymes are biological catalysts and they are used in the production of alcoholic drinks.

Heat energy changes in chemical reactions

30	What is an exothermic reaction and give an example?	A reaction that gives out heat energy. For example combustion.
31	What is an endothermic reaction and give an example?	A reaction that takes in heat energy. For example photosynthesis.
32	Is the breaking of bonds exothermic or endothermic?	Endothermic.
33	Is the making of bonds exothermic or endothermic?	Exothermic.
34	Why is a reaction exothermic?	In an exothermic reaction less heat energy is needed to break bonds than is given out when new bonds are made.
35	Why is a reaction exothermic?	In an endothermic reaction less energy is released in forming bonds in the products than is required in breaking bonds in the reactants.
36	How do you calculate the energy change in a reaction?	Subtract the energy created when bonds are made from the energy needed to break the bonds in the reactants. If the answer is negative then the reaction is giving out energy and is exothermic.
37	What is the unit for measuring the energy change in reactions?	KJ mol ⁻¹ (kilojoule per mole)
38	What is meant by the term activation energy?	The energy needed for a reaction to start. This is equal to the energy needed to break all the reactants' bonds.
39	What does the reaction profile for an exothermic reaction look like?	Energy reactants products
		Reaction path

Topic 8- Fuels and Earth Science

Fuels

41	What is a hydrocarbon?	A hydrocarbon is a compound that contains hydrogen and carbon ONLY.
42	What is crude oil?	Crude oil is a complex mixture of hydrocarbons. Some of these hydrocarbons contain molecules in which carbon atoms are in chains and some where they are in rings. Crude oil is an important source of useful substances and a finite resource.
43	With respect to crude oil, what is a "fraction"?	A fraction is a simpler, more useful mixture of hydrocarbons with a similar boiling point, e.g. petrol or bitumen.
44	What is the name of the process used to separate crude oil into its fractions?	Fractional distillation.
45	How does the fractional distillation of crude oil work?	The crude oil is heated and boiled. The vapour is then passed into a cooling tower. The hot vapours rise up the tower and cool as they do so. The first substance in crude oil to change back to a liquid is bitumen and this falls to the bottom of the tower and exits, the hot vapours rise through the tower and pass through one- way traps. This process continues until all the fractions have been separated and the gases at room temperature leave at the top of the tower.
46	The fractions come off the fractionating column in the following order (starting from the top of the column). Name the uses of each fraction: a) Refinery gases b) Petrol c) Kerosene d) Diesel oil e) Fuel oil f) Bitumen	 a) domestic heating and cooking b) fuel for cars c) fuel for aircraft d) fuel for some cars and trains e) fuel for large ships and in some power stations f) used to surface roads and roofs
47	 Hydrocarbons in different fractions differ from each other in: Number of carbon atoms in their molecules, boiling points, ease of ignition (flammability) and viscosity (stickiness). a) which fraction has the most carbon atoms in its molecules (the longest carbon chain)? b) which fraction has the lowest boiling point? 	a) bitumen b) refinery gases c) bitumen d) refinery gases

	c) which fraction is the hardest to ignite (least flammable)?d) which fraction has the lowest viscosity?	
48	Are alkanes saturated or unsaturated?	Saturated. (They have no carbon-carbon double bonds that can open up to bond with any more hydrogen atoms – they are saturated with hydrogen.)
49	 What is the formula for a) methane b) ethane c) propane Draw the structures of these molecules 	a) CH_4 b) C_2H_6 c) C_3H_8 H H H H H H H-C-H H-C-C-H
50	What is the formula for the alkenes a) ethene b) propene	a) C ₂ H ₄ b) C ₃ H ₆
51	What is a homologous series?	A homologous series is a series of compounds that have similar properties and the same general formula. A compound will differ by CH ₂ in molecular formulae from neighbouring compounds. There will be a gradual change in physical properties as the carbon chain gets longer.
52	What are the reactants and products of the complete combustion of hydrocarbons?	Reactants – hydrocarbon and oxygen. Products – carbon dioxide and water ONLY. (Energy is released, but it is not a product, because it is not a chemical substance.)
53	What are the products of the incomplete combustion of hydrocarbons? Why are they different from the products of complete combustion?	Products – carbon monoxide and/or carbon and water. Incomplete combustion produces a mixture of carbon compounds.) Carbon monoxide (CO) and/or carbon \bigcirc are produced because there is not enough oxygen available to form carbon dioxide (CO ₂).
54	Why are we concerned about incomplete combustion?	Incomplete combustion can cause the release of carbon monoxide, which is toxic. The soot (carbon) produced can damage appliances.
55	What effect does carbon monoxide have on the body?	Carbon monoxide is toxic. It binds to 26on-renewab and doesn't let go. It therefore reduces the amount of oxygen that's transported around the body by the blood depriving vital organs of oxygen. Unconsciousness and death follows.
Earth a	nd Atmospheric Science	

s rain that is more acidic than normal.
fuels (coal, gas and crude oil) contain particularly sulfur. When the fuel is burnt the

		sulfur combines with oxygen to produce sulfur dioxide gas. When water vapour in the atmosphere condenses the sulfur dioxide gas dissolves in it to form an acidic solution. This can then fall as rain and because it is more acidic than normal rainwater it is called "acid rain".
57	What are the problems associated with acid rain?	Acid rain makes rivers, lakes and soils acidic, harming the organisms living there. Acid rain damages the leaves and roots of plants and trees. Acid rain can speed up the weathering of limestone (rocks or buildings) and marble.
58	How are nitrogen oxides produced?	Many hydrocarbons are burnt in engines. The high temperatures involved mean that the nitrogen and oxygen from the air combine to produce oxides of nitrogen.
59	What is a 27on-renewable fuel?	A fuel that once it has been used cannot be used again. E.g. kerosene, diesel, petrol, methane (from natural gas).
60	What is the cause of a sooty flame?	Incomplete combustion. (Not enough oxygen present to convert all the carbon in the hydrocarbon fuel to carbon dioxide, so carbon particles are one of the products of the reaction.)
61	Give an advantage and a disadvantage of combining hydrogen and oxygen in a fuel cell, rather than petrol, as a fuel for cars.	Advantage – hydrogen is a clean fuel. The only product of the combination of hydrogen and oxygen is water. Therefore no carbon dioxide, nitrogen oxide or acid rain would be produced. Disadvantage – hydrogen can be explosive/hydrogen is not readily available in filling stations at present /the process needed to produce the hydrogen fuel results in the production of carbon dioxide.
62	a) Explain what "cracking" is, and what products are made.b) Why do oil companies bother to carry out this reaction?	 a) Cracking is the splitting (using heat) of a long chain saturated hydrocarbon (an alkane) to form a shorter chained alkane and an alkene. b) Shorter chained hydrocarbons make better fuels. Crude oil contains too many of the longer chained molecules, so oil companies crack them to i) make more of the useful fuels, and ii) make alkenes (which can be used to make polymers).
63	How was the earth's first atmosphere formed?	From gases produced by volcanic activity.
64	What are thought to be the relative proportions of the gases that formed the early atmosphere?	Little or no oxygen, large amounts of carbon dioxide, large amounts of water vapour and small amounts of other gases.
65	Why can't we be certain about how the earth's atmosphere formed?	There is only limited evidence (e.g. from rocks and ice cores) about the earth's early atmosphere.
66	How were the earth's oceans formed?	Water vapour, released by volcanoes, condensed to form the oceans.
67	How did the amount of oxygen in the atmosphere gradually increase?	Green plants evolved. The growth of these primitive plants used carbon dioxide and released oxygen by photosynthesis.
68	What is a chemical test for oxygen?	Oxygen will relight a glowing splint.
69	Describe the processes, other than photosynthesis, that reduced the amount of carbon dioxide in the atmosphere.	a) Carbon dioxide dissolved into the oceans.b) Dissolved carbon dioxide was incorporated into the shells of marine organisms. When marine

		organisms die their shells can eventually form carbonate rocks.
70	What is the greenhouse effect?	This is when various gases are added to the atmosphere, including carbon dioxide, methane and water vapour. These gases absorb heat radiated from the Earth and subsequently release the energy that keeps the Earth warm.
71	What evidence do we have for global warming and why can we not be absolutely certain about it?	Scientists have discovered a correlation between historical global temperature and carbon dioxide levels. They also know how much carbon dioxide we are presently adding to the atmosphere. We cannot be certain about this because of historical accuracy of the temperature and carbon dioxide levels and also due to uncertainties caused by the location where measurements are taken.
72	List the percentages of the gases in our modern atmosphere.	Nitrogen 78%, oxygen 21%, 1% other gases (argon, carbon dioxide and water vapour).
73	What are the potential effects on the climate of increased levels of carbon dioxide and methane caused by human activity?	The climate will warm up although we cannot be certain by how much. It is also suspected we will have a long term change in weather (e.g. more/less rain) and more extreme weather events.
74	How might the greenhouse effect be mitigated?	We would need to reduce the consumption of fossil fuels by looking at alternative sources of energy e.g. nuclear or renewables. Also, a different fuel for transport e.g. electricity or fuel cells.
75	Why can we not just stop burning fossil fuels to generate electricity?	Nuclear power is not liked by all and the waste is a risk and can be a problem for the environment. Solar and wind don't produce that much electricity so you would need thousands of solar and wind farms and this would take too much space and be extremely expensive. Generation from solar and wind is not always continuous.

Physics Key Concepts (Paper 5 and 6)

1	What is the standard unit and symbol for	
1		
	A) distance	A) metre, m
	B) mass	B) kilogram, kg
	C) time	C) second, s
	D) temperature	D) kelvin, K
2	What is the derived unit and symbol for	
	A) Frequency	A) hertz, Hz
	B) Force	B) newton, N
	C) Energy	C) joule, J
	D) Power	D) watt, W
	E) Pressure	E) pascal, Pa
	F) Electric charge	F) coulomb, C
	G) Electric potential difference	G) volt, V
	H) Electric resistance	H) ohm, Ω
	I) Magnetic flux density	I) tesla, T
3	Write the decimal of	
	A) giga (G)	A) 1,000,000,000 (10 ⁹)
	B) mega (M)	B) 1,000,000 (10 ⁶)
	C) kilo (k)	C) 1000 (10 ³)
	D) centi (c)	D) 0.01 (10 ⁻²)

7	In calculation questions what must you remember to do?	Substitute in values in standard units, show working out clearly and show the units on the answer. Triangles are a tool to help us re-arrange equations.
6	Convert the following into standard form:	
5	How do you convert minutes into seconds	Multiply minutes value by 60
4	How do you convert minutes into hours	Divide minutes value by 60
	G) nano (n)	G) 0.000000001 (10 ⁻⁹)
	F) micro (μ)	F) 0.000001 (10 ⁻⁶)
	E) milli (m)	E) 0.001 (10 ⁻³)

Topic 1- Waves (Paper 5)

1	What do waves transfer?	Energy and information but not matter.
2	What evidence is there that waves do not transfer matter?	 For water waves, <u>a float</u> on the surface of the water <u>will</u> <u>move only up and down not across the water</u>. For sound waves, an <u>air particle will</u> vibrate back and forth <u>not travel across the room</u>.
3	Give examples of longitudinal waves	 Sound waves (including ultrasound and infrasound) Seismic P (primary) waves
4	Describe a longitudinal wave	The direction of the vibration is parallel to the direction of the energy travel
5	Describe a transverse wave	The direction of the vibration is perpendicular to the direction of the energy travel
6	Give examples of transverse waves	All of the electromagnetic waves (including light, seismic S (secondary) waves, water waves and waves on a string.)
7	What is the wavelength and what is it measured in?	The length of 1 complete wave cycle. It is measured in meters (m).
8	What is the amplitude and what is it measured in?	The distance from the centre of a wave to the top of the wave. It is measured in meters (m).
9	What is the frequency of a wave and what is it measured in?	The number of waves in 1 second and the unit is Hertz (Hz)
11	What is the period of a wave and what is it measured in?	The time for 1 complete wave. It is measured in seconds (s).
14	As the wavelength of a wave increases, how is its frequency changed? (Assuming that it is travelling at a constant speed).	The frequency would decrease.
17	What happens to the speed of sound as you move from gas to liquid to solid?	 It increases. This is because there are more particles to pass on the vibrations.
18	What is the speed of sound in a vacuum?	0 m/s. Sound cannot travel through a vacuum as there are no particles to pass on the vibrations.
19	Which two equations can be used to find the velocity of a wave?	 Distance / time frequency x wavelength.
20	CORE PRACTICAL Describe how to measure the velocity of sound in a gas like air.	 Use a <u>signal generator</u> to produce a sound of known frequency. Connect <u>2 microphones to an oscilloscope</u> to detect the sound waves in front of the speaker. <u>Move 1 microphone away until the waveforms are aligned</u>. <u>Measure the distance between the microphones</u> as this is the wavelength of the sound wave.

		5. The speed (in m/s) will be frequency (Hz) x wavelength (m).
21	CORE PRACTICAL	1. Use a <u>ripple tank</u> to create water waves.
	Describe how to measure the velocity of a wave in a liquid like water.	 Measure the distance between 2 peaks, this is the wavelength.
		3. Find the frequency by counting the number of waves past a
		point in 10s and divide by 10.
		4. The speed (in m/s) will be frequency (Hz) x wavelength (m).
		5. Alternatively, mark 2 points on the side of the ripple tank
		and time how long it takes 1 wave to travel between the 2
		points.
		6. Measure the distance of the 2 points.
22	CORE PRACTICAL	 The speed (in m/s) will be distance (m) divided by time (s). Suspend the steel rod and hit it with a hammer.
22		 <u>Suspend the steel rod</u> and <u>hit it with a hammer</u>. <u>Use a frequency app to record the peak frequency</u> (or a
	Describe how to measure the velocity of sound in a solid like steel.	microphone and oscilloscope).
	solid like steel.	3. <u>Measure the length of the steel rod</u> .
		4. Wavelength = 2 x length and so divide the length by 2 to
		find wavelength.
		5. The speed (in m/s) will be frequency (Hz) x wavelength (m).
28	What is refraction and what causes it?	Refraction is the bending (change of direction) of a wave as it
		passes between different materials.
		H) It is caused by the <u>slowing down or speeding up of the wave</u>
		as it travels from one density to a different density.
29	As light travels from a more dense material to a less	Away from the normal line.
	dense material, what direction will it bend in?	
	As a wave enters a less dense material, what direction	Towards the normal
	will it bend in?	
33	CORE PRACTICAL	1. Place a rectangular glass block on plain paper
	Describe how to investigate refraction in a rectangular block	2. Draw around the block
	DIOCK	 Shine a ray of light through the block Mark where the light travels on the paper with crosses
		5. Remove the block and join the lines up with a pencil
		6. Measure the angles of incidence and refraction
		7. Change the angle of incidence and repeat steps 4 & 5

Topic 2- Light and the electromagnetic spectrum (Paper 5)

2	What are the colours of light in the visible spectrum?	Red, Orange, Yellow, Green, Blue, Indigo, Violet.
	(Start with the longest wavelength)	
3	What is the order of waves in the electromagnetic	Radio waves, Microwaves, Infrared waves, Visible light,
	spectrum? (Start with the longest wavelength)	Ultraviolet rays, X-rays, Gamma rays.
4	Which part or parts of the electromagnetic spectrum	Only visible light.
	can we detect with our eyes?	
5	Which travels faster in a vacuum light or radio waves?	Neither, all electromagnetic waves travel at the same speed in
		a vacuum (3 x 10 ⁸ m/s).
6	Which end of the electromagnetic spectrum has waves	Radio waves
	of the longest wavelength?	
7	Which end of the electromagnetic spectrum has waves	Gamma rays
	of the highest frequency?	
8	What are the harmful effects of excessive exposure to:	1. Internal heating of body cells
	1. Microwaves	2. Skin burns
	2. Infrared	3. Damage to surface cells and eyes, leading to skin
	3. Ultraviolet	cancer and eye conditions
	4. X-rays and gamma rays?	4. Mutation or damage to DNA/cells in the body, causes
		cancer
9	What can happen to an atom if it is exposed to harmful	 The atom may gain enough energy to have an electron
	electromagnetic waves?	removed.
		 This leaves it charged and so it becomes an ion.
10	As the frequency of a wave increases, what happens to	The danger increases because of the increased energy.
	the potential danger?	
11	H) What can be used to produce radio waves in a	Oscillations in electrical circuits in the transmitter.
	transmitter?	• These oscillations can induce radio waves.

12	 Name some of the uses of: 1. Radio waves 2. Microwaves 3. Infrared 4. Visible light 5. Ultraviolet 6. X-rays 7. Gamma rays 	 Broadcasting, communications and satellite transmissions. Cooking, communications and satellite transmissions Cooking, thermal imaging, short range communications, optical fibres, TV remote controls and security systems. Vision, photography and illumination. Security marking, fluorescent lamps, detecting forged bank notes, disinfecting water. Observing the internal structure of objects, airport security scanners and medical X-rays. Sterilising food and medical equipment and the detection of cancer and its treatment.
13	Name 3 types of ionising electromagnetic radiation that transfer energy?	Short frequency UV rays, X-rays and gamma rays
17	Describe how changes in atoms and nuclei can emit EM radiations	 <u>EM radiations are produced</u> by <u>changes in the electrons or</u> <u>nuclei in atoms</u> When materials are heated, this <u>changes how electrons are</u> <u>arranged</u> and can <u>produced infrared or visible light</u>.

Topic 3- Radioactivity (Paper 5)

1	Describe the plum pudding model of the atom	A sphere of positive charge with electrons spread through it.
2	Describe the Bohr model of the atom	 It has a tiny, positively charged nucleus (containing almost all the mass in the form of protons and neutrons) surrounded by negatively charged electrons in fixed energy levels (orbits or shells).
3	What is the typical size of an atom?	1 x 10 ⁻¹⁰ m (0.1 nanometres)
4	Describe Rutherford experiment and state what it proved about the atom	 Geiger and Marsden carried out an experiment where alpha particles were fired at some gold foil. Alpha particles are repelled by positive charge. It was detected that most of the alpha particles went straight through the foil 5but a small number (1/8000) of the alpha particles w6ere deflected through anything from 1° to 180° Rutherford explained the results and said that most of the atom is empty space, the nucleus is tiny. The nucleus contains most of the mass and it is positively charged.
6	Describe an alpha particle	 Made of 2 protons and 2 neutrons Same as a helium nucleus A charge of +2 relative mass of 4
7	Describe a beta negative particle	 A high energy electron Released from the nucleus of the atom A charge of -1 A relative mass of 1/2000
8	Describe a beta positive (positron) particle	 The anti-particle to the electron Released from the nucleus of the atom A charge of +1 A relative mass of 1/2000
9	Describe a gamma ray	 A high frequency electromagnetic wave Released from the nucleus of an atom alongside alpha or beta No charge No mass
10	What are the properties of alpha radiation?	 They are highly ionising But not very penetrating They are affected by electric and magnetic fields because they are charged Absorbed by a few cm of air or thin paper.
11	What are the properties of beta+/- radiation?	• Ionising

		 Fairly penetrating They are affected by electric and magnetic fields because they are charged
		 Absorbed by a few mm of a metal like aluminium
12	What are the properties of gamma radiation?	Weakly ionising
		Very penetrating
		Not affected by electric and magnetic fields
		 Absorbed by a few cm of a dense metal like lead will
		significantly reduce the amount of gamma rays getting
1.4	What is the velotionship between the number of	through
14	What is the relationship between the number of protons and the number of electrons in an atom?	• They are equal
4.5	•	So the atom has no overall charge
15	What happens in beta minus decay in terms of	• A neutron becomes a proton + an electron.
	particles?	• This causes the atomic number (proton number) to increase
		by 1
		• The mass number (nucleon number) stays the same.
16	What happens in beta plus decay in terms of particles?	 A proton becomes a neutron + a positron.
		 This causes the atomic number (proton number) to
		decrease by 1
		• The mass number (nucleon number) stays the same.
24	When is gamma radiation emitted?	When a radioisotope undergoes decay by alpha or beta (+ or -)
		emission the nuclear rearrangement usually results in the
		excess energy being released as gamma radiation.
25	What are the dangers of ionising radiation?	In low doses, can cause cancer as there may be damage to DNA.
-		In high doses, can cause skin burns, radiation sickness and even
		death.
26	What precautions are taken to ensure the safety of	 Radiation is monitored
	patients and staff involving in using radiation medically?	 Dose and exposure time are limited
		• People are also protected with screening and protective
		clothing
38	What is meant by background radiation?	Radiation that is around us all the time.
39	Why are there regional variations in the levels of	• 50% of the background radiation is due to radioactive radon
	background radiation?	gas
		Granite rock contains uranium which breaks down it into
		radon gas
		radon gas • Some parts of the country have higher concentrations of
		Some parts of the country have higher concentrations of
		• Some parts of the country have higher concentrations of granite in the ground
		 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and
40	Where does most the background radiation come	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation
40	Where does most the background radiation come	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as:
40	Where does most the background radiation come from?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas
40	-	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil
40	-	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun
40	-	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as:
40	-	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products
40	-	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays
40	from?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power
41	from? What is meant by the activity of a source?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope.
-	from? What is meant by the activity of a source? What is activity measured in?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq)
41 42 43	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time.
41 42	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time? What is half-life?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time. The time it takes for half of the un-decayed nuclei to decay
41 42 43	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time.
41 42 43 44	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time? What is half-life?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time. The time it takes for half of the un-decayed nuclei to decay
41 42 43 44	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time? What is half-life? A sample of air contains 6 mg of radon. Radon has a half-life of 4 days. Calculate the mass of the radon remaining after 8 days.	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time. The time it takes for half of the un-decayed nuclei to decay Calculation of number of half-lives: 8 ÷ 4 = 2 (half-lives)
41 42 43 44	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time? What is half-life? A sample of air contains 6 mg of radon. Radon has a half-life of 4 days.	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time. The time it takes for half of the un-decayed nuclei to decay Calculation of number of half-lives: 8 ÷ 4 = 2 (half-lives)
41 42 43 44 47	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time? What is half-life? A sample of air contains 6 mg of radon. Radon has a half-life of 4 days. Calculate the mass of the radon remaining after 8 days.	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time. The time it takes for half of the un-decayed nuclei to decay Calculation of number of half-lives: 8 ÷ 4 = 2 (half-lives) Evaluation of mass: 6 ÷ 2 = 3 ÷ 2 = 1.5 (mg)
41 42 43 44 47	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time? What is half-life? A sample of air contains 6 mg of radon. Radon has a half-life of 4 days. Calculate the mass of the radon remaining after 8 days.	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time. The time it takes for half of the un-decayed nuclei to decay Calculation of number of half-lives: 8 ÷ 4 = 2 (half-lives) Evaluation of mass: 6 ÷ 2 = 3 ÷ 2 = 1.5 (mg)
41 42 43 44 47 48	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time? What is half-life? A sample of air contains 6 mg of radon. Radon has a half-life of 4 days. Calculate the mass of the radon remaining after 8 days. What is the danger of ionising radiation?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time. The time it takes for half of the un-decayed nuclei to decay Calculation of number of half-lives: 8 ÷ 4 = 2 (half-lives) Evaluation of mass: 6 ÷ 2 = 3 ÷ 2 = 1.5 (mg) Damage to cells and tissues causing cancers or mutations. Possible deformities at birth in future generations.
41 42 43 44 47 48	from? What is meant by the activity of a source? What is activity measured in? How does activity vary with time? What is half-life? A sample of air contains 6 mg of radon. Radon has a half-life of 4 days. Calculate the mass of the radon remaining after 8 days. What is the danger of ionising radiation?	 Some parts of the country have higher concentrations of granite in the ground and so, they have a greater concentration of radon and background radiation Natural sources, such as: radon gas rocks and soil cosmic rays from outer space and the sun Man-made sources, such as: building products medical uses like X-rays nuclear power How many decays there are every second from a radio-isotope. Becquerels (Bq) Activity decreases with time. The time it takes for half of the un-decayed nuclei to decay Calculation of number of half-lives: 8 ÷ 4 = 2 (half-lives) Evaluation of mass: 6 ÷ 2 = 3 ÷ 2 = 1.5 (mg) Damage to cells and tissues causing cancers or mutations. Possible deformities at birth in future generations. Always point sources away from yourself and others

1		-	
	53	What is the difference between contamination and	 An object or person would be contaminated if unwanted
		irradiation?	radioactive particle gets on them or into them.
			 The object or person would be irradiated if exposed to
			radiation.

Topic 4- Forces and motion (Paper 5)

1	Explain the difference between a scalar and vector	A vector has:
	quantity	magnitude/size
		direction
		A scalar quantity has:
		It has a <u>magnitude/ size</u>
		But no direction
2	Name examples of a scalar quantity	Distance
-	······	Speed
		Mass
		energy
3	Name examples of a vector quantity	Displacement
5		Velocity
		Acceleration
		Force/weight
		momentum
4	Possil the equation for speed	
4	Recall the equation for speed	Speed = distance ÷ time
9	Using a distance time graph, describe what is	O and A: The object is accelerating forwards
	happening to the object between O and A, A and B	A and B: The object is stationary
	and B and C?	B and C: The object is moving backwards
	8	
	ξ.	
	Pistance (m)	
	2	
	^U 2 4 6 8 10 12 14 16 18 20 22 24 26 Time (seconds)	
10	How do you calculate change in velocity?	Change in velocity = final velocity – initial velocity
10		V-u
11	Recall the equation for acceleration	Acceleration = (final velocity – initial velocity) ÷ time
16	Give 2 examples of how an object can accelerate.	1) If it's speeding up or slowing down.
10		2) If it's changing direction.
17	Describe the motion of each objects on these	1) The object is accelerating quickly
17	velocity-time graphs	2) The object is moving at a constant speed
		3) The object is decelerating
		4) The object is stationary
		4) The object is stationary
	1 t 2 t 3 t 4 t	
18	Describe how to calculate the distance an object has	By measuring the area under the graph
	travelled using a velocity-time graph	
20	CORE PRACTICAL	• You can time it with a stopwatch over a set distance but this
_	What equipment can be used to experimentally find	will be subject to human error.
	the speed of a moving object?	• A more accurate way would be to use light gates.
		• As the object passes the first gate, the timing starts and as it
		crosses the second gate the timing stops.
		• If the distance is known between the two points, the average
		speed can be calculated.
		• Using a card of known length, to interrupt the light beam, the
		actual speed at each light gate can be calculated.
		• This would allow changes in speed to be measured, for example
		accelerations.

A. a strong breeze B. sound in air 330m/s B. sound in air C. walking pace 1Am/s D. cycling pace C. walking pace 1Am/s D. cycling pace E. car in built up area F. car on motorway 31m/s F. car on motorway G. a commuter train H. a ferry H. a ferry 18m/s I. an aeropiane 250 m/s I. an aeropiane 250 m/s J. light in a vacuum J. light in a vacuum 22 What site acceleration of these: A. An ordinary car 3 m/s ² A. an ardinary car B. a supercar D. a rollercoaster C. a person on a bicycle D. a rollercoaster E. a builtet 1000000 m/s ² C. a person on a bicycle D. a rollercoaster E. a builtet 1000000 m/s ² Z5 What site hextra left-over force called in an unbalanced situation? Nesultant 27 What site the extra left-over force called in an unbalanced situation? Forces acting in the opposite direction are added together is no resultant force and wate ffect will it har? 30 When the forces on an object are balanced, what is the exceleration of the object? A site forces are balanced there is no resultant force and will be no change to the object speed. Jierction on shape 31 Name two common resistance forces on a moving object are grant in size with ther thust forces exerted on it - what is the acceleration of the object? 33 What set the two different units for gravity a	1		
B. sound in air C. walking pace C. walking pace D. cycling pace Gm/s E. car in built up area E. car in built up area 10.5m/s F. car on motorway G. commuter train 5m/s H. a ferry I. an aeroplane 250 m/s J. light in avacum Jum/s ¹ 22 What is the acceleration due to gravity on earth? (g) J0 m/s ² 23 Estimate the acceleration of these: A. An ordinary car 3 m/s ² B. a supercar C. a person on a bicycle 0.5m/s ² D. a rollercoaster E. a builet from agun 25 What is the excut left-over force called in an upbalanced situation? When 2 bodies interact (for example, your foot and a foott traveaction and reaction forces? 28 How do you calculate the resultant force? • forces acting in the same direction are added together effects on an object are balanced, what is the forces are balanced there is no resultant force and s what effect will it have? 30 When the forces on an object are balanced, what is the acceleration of the object? 31 Name two common resistance forces on a moving object are guad in size with the thrust forces exerted on it - what is the acceleration of the object? 31 If the resistance forces on a moving object are gravit; (i) a scall and there is a callerant force and simal	21	Estimate the speeds of these:	A. Strong breeze 25m/s
C. walking pace D. cycling pace for fs D. cycling pace for holit up area 10.5m/s F. car on motorway G. a commuter train H. a ferry H. a ferry J. light in a vacuum J. a ordirezoster E. a bullet form a gun What is the extra left-over force called in an unbicked ed stuation? Unbalanced struation? Parces acting in the same direction are added together + forces on an object are balanced, what is the resultant force and what effect will thave? J. Name two common resistance forces that slow . Air resistance J. When the acceleration of the object? J. Name two common resistance forces on a moving object are gual in size withthe thrust forces exerted on it - what is the acceleration of th		-	
D. cycling pace E. car in built up area F. car on motorway F. car on motorway 31m/s G. a commuter train H. a ferry 18m/s I. an aeroplane J. light in a vacuum 300000000m/s. J. light in a vacuum J. light in a vacuum 300000000m/s. 22 What is the acceleration due to gravity on earth? (g) J0 m/s ² 23 Estimate the accelerations of these: A. An ordinary car 3 m/s ² A. an ordinary car B. a supercar 6 m/s ² B. a supercar C. a person on a bicycle D. a rollercoster E. a builet 1000000 m/s ² E. a builet 1000000 m/s ² 25 What are action and reaction forces? When 2 bodies interact (for example, your foot and a foott they exert forces on each other that are equal in size and opposite in direction. 27 What is the extra left over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? Forces acting in the opposite direction are subtracted as the forces on a moving object are equal in size with the thrust force exerted on it – what is the acceleration of the object? as the forces on a moving object are equal in size with the thrust force exerted on it – what is the acceleration of the object? as the acceleration of the object? asthe force are as a scaceleration. whis as a salar q			
E. car in built up area F. car on motorway 31m/s G. a commuter train 55m/s G. a commuter train 55m/s H. a ferry I. an aeroplane 250 m/s J. light in a vacuum 300000000m/s. J. light in a vacuum 10 m/s ² Stimate the acceleration due to gravity on earth? (g) 10 m/s ² An an ordinary car 3 m/s ² a supercar 6 m/s ² D. a rollercoaster C. a person on a bicycle 0.5m/s ² D. a rollercoaster E. a builet 1000000 m/s ² E. a builet from a gun What is the extra left-over force called in an unbalanced situation? Vhat is the extra left-over force called in an unbalanced situation? Perces acting in the same direction are added together efforces are balanced there is no resultant force? Vhat is the extra left-over force stalled in thave? • Forces acting in the opposite direction are added together efforces and and added together efforces on an object are balanced, what is the resultant force and what effect will it have? 30 When the forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? 31 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? 33 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the			
F. car on motorway G. commuter train Sn/s H. a ferry H. a ferry 1. an aeroplane J. light in a vacuum 300000000m/s. 22 What is the acceleration due to gravity on earh? (g) 10 m/s² 23 Estimate the acceleration of these: A. An ordinary car B. a supercar C. a person on a bicycle 0.5m/s² D. a rollercoaster D. a rollercoaster C. a person on a bicycle 0.5m/s² D. a rollercoaster D. a rollercoaster What is the extra left-over force called in an unbalanced situation? 24 What is the extra left-over force called in an unbalanced situation? 27 What is the extra left-over force called in an unbalanced situation? 28 How do you calculate the resultant force? 9 Forces acting in the apposite direction are added together + Forces acting in the opposite direction are subtracted 30 When the forces on a moving object are equal in size with the thrust force severed on it - what is the acceleration of the object? 31 Fher resistance forces on a moving object are equal in size with the thrust forces exerted on it - what is the acceleration of the object? 33 If the resistance forces on a moving object are equal mate with the thrust forces exerted on it - what is the acceleration of the object? 34 <			
G. a commuter train H. a ferry 18m/s H. a ferry I. an aeroplane 250 m/s J. light in a vacuum 10 m/s ² 22 What is the accelerations of these: A. An ordinary car 3 m/s ¹ B. a supercar C. a person on a bicycle D. a rollercoaster 40m/s ¹ C. a person on a bicycle D. a rollercoaster 40m/s ¹ E. a builet 100000 m/s ² 25 What is the extra left-over force called in an unbalanced situation? Resultant Porces and there that are equal in size and opposite in direction. 26 What is the extra left-over force called in an unbalanced situation? Resultant Porces acting in the same direction are added together + forces and there that are equal in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced what is the resultant force? + Forces acting in the apposite direction are added together + forces acting in the opposite direction are subtracted will be no change to the object''s speed, direction or shape 30 When the forces on a moving object are equal in size with the thrust forces severed on it - what is the acceleration of the object' . Air resistance 31 Name two common resistance forces on a moving object are gual and severe there is no resultant force and severe mass a caceleration of the object' . It will accelerate. 33 If the resistance forces on a moving object			
H. a ferry I. an aeroplane 250 m/s J. light in a vacuum 300000000m/s. 22 What is the acceleration due to gravity on earth? (g) 10 m/s ³ 23 Estimate the acceleration of these: A. An ordinary car 3 m/s ¹ 24 An an ordinary car 3 m/s ¹ B. a supercar 6 m/s ² 25 A. an ordinary car 3 m B. a supercar 6 m/s ² 26 a builet from a gun D. a rollercoaster 27 What are action and reaction forces? When 2 bodies interact (for example, your foot and a foot they exert forces on each other, that are equal in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? Forces acting in the apposite direction are subtracted Some common estigatome forces that slow As the forces are balanced there is no resultant force. Forces are balanced there is no resultant force. Some common estance forces on a moving object are equal in size with the thrust forces exerted on it - what is the acceleration of the object? As the forces are balanced there is no resultant force. Some the acceleration of the object? When the acceleration of the object? Mame two common residement of the object? Mame two common estates forces on a moving object are subtrated there is no resultant force. Some the accelera		-	
I. light in a vacuum J. light in a vacuum 30000000m/s. 22 What is the acceleration due to gravity on earth? (g) 10 m/s² 23 Estimate the acceleration of these: A. An ordinary car 3 m/s² B. a supercar B. a supercar C. a person on a bicycle D. a rollerocoaster D. a rollerocoaster 40m/s² 24 What is the extra left-over force called in an unbalanced situation? When 2 bodies interact (for example, your foot and a foott they exert forces on ach other that are equal in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Forces acting in the same direction are subtracted opposite in direction are subtracted in step with the thrust force? 10 When the forces on an object are balanced, what is the extra left-over force step tanced there is no resultant force and swill be no change to the object's speed, direction or shape 31 Name two common resistance forces that slow 1. Friction 32 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? 33 If the resistance forces on a moving object are simaller in size with the thrust forces exerted on it – what is the acceleration of the object? 34 If the resistance forces on a moving object are simaller in size with the thrust force searetal on it – what is the acceleration of the object? </th <td></td> <td></td> <td></td>			
J. light in a vacuum 10 m/s ² 22 What is the acceleration of these: A. An ordinary car 3 m/s ² 32 Estimate the accelerations of these: A. An ordinary car 3 m/s ² 34 A an ordinary car B. a supercar C. a person on a bicycle 0.5m/s ² 35 and and reaction forces? What are action and reaction forces? What are action and reaction forces? 25 What is the extra left-over force called in an unbalanced situation? Resultant revex ext forces an each other that are equal in size and opposite in direction. 26 What is the extra left-over force called in an unbalanced situation? • Forces acting in the same direction are added together 27 What is the extra left-over force called in an unbalanced situation? • Forces acting in the opposite direction are added together 28 How do you calculate the resultant force? • Forces acting in the opposite direction are subtracted 30 When the forces on an object are balanced, what is the escilatance forces on a moving object are equal in size with the thrust force sere that ancel there is no resultant force and s will be no acceleration. The object? 31 If the resistance forces on a moving object are grade in size with the thrust force sereted on it - what is the acceleration of the object? 33 If the resistance forces on a moving object are grade in size w			
22 What is the acceleration due to gravity on earth? (g) 10 m/s² 23 Estimate the accelerations of these: A. An ordinary car 3 m/s² 24 A. an ordinary car 3 m/s² 8. a supercar C. a person on a bicycle D. a rollercoaster D. a rollercoaster 40m/s² 25 What are action and reaction forces? When 2 bodies interact (for example, your foot and a foott they exert forces on each other that are equal in size and opposite indirection. 27 What is the extra left-over force called in an unbalanced situation? • Forces acting in the same direction are subtracted 28 How do you calculate the resultant force? • Forces acting in the opposite direction are subtracted in the resultant force and a moting object are equal in size with the thrust force severted on it - what is the acceleration of the object? • Forces acting in the opposite direction or shape 30 When the forces on a moving object are equal in size with the thrust forces exerted on it - what is the acceleration of the object? • Forces acting in the opposite direction or shape 31 Name two common resistance forces that slow 1. Friction 32 If the resistance forces on a moving object are graverted on it - what is the acceleration of the object? As the forces are balanced there is no resultant force and swill be no acceleration. The object will remain at constant: the acceleration of the obje			J. light in a vacuum 30000000m/s.
23 Estimate the accelerations of these: A. An ordinary car 3 m/s ² A. an ordinary car B. a supercar 6 m/s ² B. a supercar C. a person on a bicycle D. a rollercoaster 4 dom/s ² E. a bullet from a gun 25 What are action and reaction forces? When 2 bodies interact (for example, your foot and a foot they exert forces on each other that are equal in size and on a bicycle on a bicycl	22		10
A. an ordinary car B. a supercar on a bicycle B. a supercar C. a person on a bicycle D. a rollercoaster E. a bullet forom agin 25 What are action and reaction forces? When 2 bodies interact (for example, your foot and a foott they exert forces on each other that are gaual in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? • Forces acting in the same direction are added together • Forces are balanced there is no resultant force and what effect will it have? 30 When the forces on an object are balanced, what is the resultant force and what effect will it have? • Forces are balanced there is no resultant force and so will be no change to the object's speed, direction or shape 31 Name two common resistance forces that slow 1. Friction 32 If the resistance forces on a moving object are smaller in size with the thrust forces exerted on it - what is the acceleration of the object? It will accelerate in the direction of the thrust force. 33 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it - what is the acceleration of the object? It will accelerate. 34 If the resistance forces on a moving object are greater in size with the thrust force son all what great with what wight? F=ma (resultant force = mass x acceleration)			· · · · · · · · · · · · · · · · · · ·
B. a supercar C. a person on a bicycle 0.5m/s ² D. a rollercoaster D. a rollercoaster 40m/s ² E. a builet from a gun E. a builet 1000000 m/s ² 25 What are action and reaction forces? When z bodies interact (for example, your foot and a foott they exert forces on each other that are equal in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? • Forces acting in the opposite direction are subtracted 30 When the forces on an object are balanced, what is the resultant force and what effect will it have? a Ka the forces are balanced there is no resultant force and s will be no change to the object's speed, direction or shape 31 Name two common resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? As the forces are balanced there is no resultant force and s will be no change to the object will remain at constant of the object? 34 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? It will <u>accelerate</u> . 31 How is weight alculated? Weight is a force due to gravity. 34 <td< th=""><td>23</td><td></td><td></td></td<>	23		
C. a person on a bicycle D. a rollercoaster 40m/s ² E. a builtet from a gun E. a builtet 1000000 m/s ² 25 What are action and reaction forces? When 2 bodies interact (for example, your foot and a foott they exert forces on each other that are equal in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? Forces acting in the same direction are added together Forces acting in the opposite direction are subtracted As the forces are balanced there is no resultant force and what effect will it have? If the resistance forces on a noving object are equal in size with the thrust forces sereted on it – what is the acceleration of the object? St the acceleration of the object? If the resistance forces on a nowing object are grater in size with the thrust forces exerted on it – what is the acceleration of the object? If the resistance forces on a nowing object are grater in size with the thrust forces exerted on it – what is the acceleration of the object? Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) m/s² (metres per second per second) patient errors with a direction. Mich equation states Newton's second law? Mich equation states Newton's second law? Nick are the two different units for gravity and why are they different? Nick are the two different with the thread in the size and unantity because it only has size (measured in N) and a direction. Mich equation state			
D. a rollercoaster E. a bullet from a gun 25 What are action and reaction forces? When 2 bodies interact (for example, your foot and a foott they exert forces on each other that are equal in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? • Forces acting in the same direction are added together • Forces acting in the opposite direction are subtracted. 30 When the forces on an object are balanced, what is the resistance forces that slow 2. If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? As the forces are balanced there is no resultant force and 3 will be no acceleration. The object will_remain at constant: what is the acceleration of the object? 33 If the resistance forces on a moving object are symaller in size with the thrust forces exerted on it – what is the acceleration of the object? Xs the force are second per second) the thrust force. 34 If the resistance forces on a moving object are greater in size with the thrust force secreted on it – what is the acceleration of the object? It will accelerate. 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? • Mass is the amount of matter. 40 <t< th=""><td></td><td></td><td></td></t<>			
E. a bullet from a gun 25 What are action and reaction forces? When 2 bodies interact (for example, your foot and a foot they exert forces on each other that are equal in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? • Forces acting in the same direction are added together 30 When the forces on an object are balanced, what is the resultant force and what effect will it have? So the forces are balanced there is no resultant force and so will be no change to the object's speed, direction or shape 31 Name two common resistance forces that slow objects down. 1. Friction 32 If the resistance forces on a moving object are qual in size with the thrust forces exerted on it – what is the acceleration of the object? It will acceleration. The object will remain at constant is the acceleration of the object? 33 If the resistance forces on a moving object are grader in size with the thrust force secreted on it – what is the acceleration of the object? It will decelerate. 34 If the resistance forces on a moving object are gravity and why are the two different units for gravity and why are the two different units for gravity and why are the two different units for gravity and why are the two different units for gravity and why are the two different units for gravity and why are the two different units for gravity and why are t			
25 What are action and reaction forces? When 2 bodies interact (for example, your foot and a foott they exert forces on each other that are equal in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? • Forces acting in the apposite direction are added together 30 When the forces on an object are balanced, what is the resultant force and what effect will it have? • Forces acting in the opposite direction or shape will be on charge to the object's speed, direction or shape will be no charge to the object's speed, direction or shape will be no charge to the object is no resultant force and so will be no charge to the object is no resultant force and so will be no charge to the object is no resultant force and so will be no charge to the object is no resultant force and so will be no caceleration. The object will remain at constant; the acceleration of the object? 31 If the resistance forces on a moving object are greater in size with the thrust force sexerted on it – what is the acceleration of the object? It will accelerate in the direction of the thrust force. 32 If the resistance forces on a moving object are greater in size with the thrust force sexerted on it – what is the acceleration of the object? It will accelerate in the direction of the thrust force. 33 If the resistance forces on a moving object are greater in size with the thrust force sexerted on it – what is the acceleration of the object? It will accelerate in the direction of the cole acceleration.			
they exert forces on each other that are equal in size and opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? • Forces acting in the apposite direction are subtracted 30 When the forces on an object are balanced, what is the resultant force and what effect will it have? As the forces are balanced there is no resultant force and so opposite direction or shape 31 Name two common resistance forces that slow objects down. 2. Air resistance As the forces are balanced there is no resultant force and s will be no acceleration. The object will remain at constant: the acceleration of the object? 33 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? It will accelerate. 34 If the resistance forces on a moving object are greater in size with the thrust force sexerted on it – what is the acceleration of the object? It will accelerate. 35 Which equation states Newton's second law? Fema (resultant force = mass x acceleration) 40 Why is mass a scalar quantity and weight a vector quantity? • Mass is the amount of matter. 41 How is weight calculated? Weight (N) = Mass (k) x g (N/kg) 45 How is weight affected by the gravitational fie	25		When 2 hodies interact (for example, your feet and a feetball)
opposite in direction. 27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? • Forces acting in the same direction are added together 30 When the forces on an object are balanced, what is the resultant force and what effect will it have? • Forces acting in the opposite direction are subtracted 31 Name two common resistance forces that slow objects down. 1. Friction • Air resistance 32 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? As the forces are balanced there is <u>no resultant force</u> and s will be <u>no acceleration</u> . The object will <u>remain at constant</u> : what is the acceleration of the object? 33 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? It will accelerate. 34 If the resistance forces on a moving object are greater in size with the thrust force sextred on it – what is the acceleration of the object? It will decelerate. 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 36 What are the two different units for gravity and why are the wight for gravity and weight a vector quantity? It will decelerate. 37	25	what are action and reaction forces!	
27 What is the extra left-over force called in an unbalanced situation? Resultant 28 How do you calculate the resultant force? • Forces acting in the same direction are added together • Forces acting in the opposite direction are subtracted 30 When the forces on an object are balanced, what is the resultant force and a what effect will it have? • Forces acting in the opposite direction are subtracted 31 Name two common resistance forces that slow objects down. 1. Friction 2. Air resistance 32 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? As the forces are balanced there is no resultant force. 33 If the resistance forces on a moving object are grater in size with the thrust forces exerted on it – what is the acceleration of the object? It will accelerate in the direction of the thrust force. 34 If the resistance forces on a moving object are grater in size with the thrust force severted on it – what is the acceleration of the object? It will accelerate. 35 Which equation states Newton's second law? m/s² (metres per second per second) the acceleration due gravity 39 What are the two different units for gravity and why are they different? • N/s? (metres per second) per second) the acceleration. 40 Why is mass a scalar quantity and weight a vector quantity because it only has size (measured weight			
unbalanced situation? • Forces acting in the same direction are added together 30 When the forces on an object are balanced, what is the resultant force and what effect will it have? • Forces acting in the opposite direction are subtracted 31 Name two common resistance forces that slow 1. Friction 32 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? As the forces are balanced there is no resultant force and swill be no change to the object will remain at constant is what is the acceleration of the object? 33 If the resistance forces on a moving object are smaller in size with the thrust forces exerted on it – what is the acceleration of the object? As the force are balanced there is no resultant force. 34 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? It will accelerate. 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? It will accelerate. 40 Why is mass a scalar quantity and weight a vector quantity because it only has size (measured) Meight (N) = Mass (kg) x g(Nkg) 41 How is weight affected by the gravitational field strength? Using a force meter (Newton meter). 45 <td>27</td> <td>What is the extra left-over force called in an</td> <td></td>	27	What is the extra left-over force called in an	
28 How do you calculate the resultant force? Forces acting in the sopposite direction are subtracted Soft the resultant force and what effect will it have? If the resistance forces on a moving object are equal in size with the thrust forces are balanced there is no resultant force and sill be no change to the object? If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? If the resistance forces on a moving object are smaller in size with the thrust forces exerted on it – what is the acceleration of the object? If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? Which equation states Newton's second law? Fema (resultant force = mass x acceleration) m/s2 (metres per second per second) the acceleration due gravity N/kg (newtons per kilogram) the gravitational field strengt Mass is the amount of matter. Winki s weight calculated? Using a force due to gravity. It has a size (measured in N) and a direction. 40 Why is weight affected by the gravitational field strengt? How is weight affected by the gravitational field strengt? How can weight be measured? Using a force meter (Newton meter). Weight will change depending on the gravitational field strength. (For example a 1kg mass bag of sugar will weigh 9. earth, and	27		
 Forces acting in the opposite direction are subtracted When the forces on an object are balanced, what is the resultant force and what effect will it have? Name two common resistance forces that slow objects down. If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? If the resistance forces on a moving object are smaller in size with the thrust forces exerted on it – what is the acceleration of the object? If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) m/s² (metres per second per second) the acceleration due gravity N/g (newtons per kilogram) the gravitational field strengt Mass is the amount of matter. It is a scalar quantity and weight a vector quantity? It is a scalar quantity and weight a vector quantity? How is weight calculated? How is weight taffected by the gravitational field strength? How is weight affected by the gravitational field strength? How is weight affected by the gravitational field strength? CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration Set up a ramp, with a trolley and light gates Sick a card to the top of the ramp Record the time it takes for the top of the ramp Record the time it ta	28		• Forces acting in the same direction are added together
30 When the forces on an object are balanced, what is the resultant force and what effect will it have? As the forces are balanced there is no resultant force and so will be no change to the object's speed, direction or shape 31 Name two common resistance forces that slow objects down. 1. Friction 32 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? As the forces are balanced there is no resultant force and so will be no acceleration. The object will remain at constant in the acceleration of the object? 33 If the resistance forces on a moving object are smaller in size with the thrust force severted on it – what is the acceleration of the object? As the forces are balanced there is no resultant force and so will be no acceleration. The object will remain at constant in the direction of the thrust force. 34 If the resistance forces on a moving object are greater in size with the thrust force severted on it – what is the acceleration of the object? It will accelerate. 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration due gravity 40 Why is mass a scalar quantity and weight a vector quantity? It is a scalar quantity because it only has size (measured in N) and a direction. 41 How is weight calculated? Weight (N) = Mass (kg) x g (N/kg) Mis a redue or gravity. 45 How is weight affected by the gravitational field strength?			
the resultant force and what effect will it have?will be no change to the object's speed, direction or shape31Name two common resistance forces that slow objects down.1. Friction 2. Air resistance32If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object?As the forces are balanced there is no resultant force and s will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> . The object will <u>remain at constants</u> will be <u>no acceleration</u> of the object?34If the resistance forces on a moving object are greater in size with the thrust force severted on it – what is the acceleration of the object?It will <u>decelerate</u> .35Which equation states Newton's second law?F=ma (resultant force = mass x acceleration due gravity erawit be cause it only has size (measured <u>N/s</u> 2 (metres per second per second) the acceleration due gravity? erawit be acceleration and weight a vector <	30	When the forces on an object are balanced, what is	
31 Name two common resistance forces that slow objects down. 1. Friction 32 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? As the forces are balanced there is no resultant force and s will be no acceleration. The object will remain at constant is the acceleration of the object? 33 If the resistance forces on a moving object are greater in size with the thrust force exerted on it – what is the acceleration of the object? It will accelerate in the direction of the thrust force. 34 If the resistance forces on a moving object are greater in size with the thrust force sexerted on it – what is the acceleration of the object? It will accelerate. 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? • Mass is the anount of matter. 40 Why is mass a scalar quantity and weight a vector quantity? • Mass is the anount of matter. 41 How is weight calculated? Weight (N) = Mass (kg) x g (N/kg) 45 How is weight affected by the gravitational field strength. Weight will change depending on the gravitational field strength. the heavier the weight. (For example a lag mass bag of sugar will weigh 9. earth, and only 1.6N on the moon). 47 CORE PRACTICAL 1. Set up a ramp, with a trolley and light gates	50		
objects down. 2. Air resistance 32 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? As the forces are balanced there is <u>no resultant force</u> and s will be <u>no acceleration</u> . The object will <u>remain at constant is with the thrust forces exerted on it – what is the acceleration of the object? 33 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? It will <u>accelerate</u> in the <u>direction of the thrust force</u>. 34 If the resistance forces on a moving object are greater in size with the thrust force sexerted on it – what is the acceleration of the object? It will <u>decelerate</u>. 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? •m/s² (metres per second per second) the acceleration due gravity 40 Why is mass a scalar quantity and weight a vector quantity? •Mass is the <u>amount of matter</u>. 41 How is weight calculated? Weight (N) = Mass (kg) x g (N/kg) 45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength. The heavier the weight. (For example a kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon). 47 <</u>	31		
 32 If the resistance forces on a moving object are equal in size with the thrust forces exerted on it – what is the acceleration of the object? 33 If the resistance forces on a moving object are smaller in size with the thrust forces exerted on it – what is the acceleration of the object? 34 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? 34 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? 35 Which equation states Newton's second law? 36 Fine acceleration of the object? 37 What are the two different units for gravity and why are they different? 40 Why is mass a scalar quantity and weight a vector quantity? 40 Why is mass a scalar quantity and weight a vector quantity? 41 How is weight calculated? 45 How can weight be measured? 46 How is weight affected by the gravitational field strength? 47 CORE PRACTICAL 48 How can weight the relationship between force, mass and acceleration 49 Are cord the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and 	01		
in size with the thrust forces exerted on it – what is the acceleration of the object? will be <u>no acceleration</u> . The object will <u>remain at constant is the acceleration of the object?</u> 33 If the resistance forces on a moving object are smaller in size with the thrust forces exerted on it – what is the acceleration of the object? It will <u>accelerate</u> in the <u>direction of the thrust force</u> . 34 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? It will <u>decelerate</u> . 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? m/s² (metres per second per second) the acceleration due gravity 40 Why is mass a scalar quantity and weight a vector quantity? • Mass is the amount of matter. 41 How is weight calculated? Weight (N) = Mass (kg) xg (N/kg) 45 How is weight affected by the gravitational field strength. 46 How is weight affected by the gravitational field strength. the heavier the weight. (For example a 1kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon). 47 CORE PRACTICAL 1. Set up a ramp, with a trolley and light gates 48 Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley to pase each light 5. Increase the mass on the trolle	32		As the forces are balanced there is <u>no resultant force</u> and so there
the acceleration of the object? 33 If the resistance forces on a moving object are smaller in size with the thrust forces exerted on it – what is the acceleration of the object? It will <u>accelerate</u> in the <u>direction of the thrust force</u> . 34 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? It will <u>decelerate</u> . 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? • M/s2 (metres per second per second) the acceleration due gravity 40 Why is mass a scalar quantity and weight a vector quantity? • Mass is the amount of matter. 41 How is weight calculated? Weight is a force due to gravity. 45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength. Weight will change depending on the gravitational field strength. Using a force meter (Newton meter). 47 CORE PRACTICAL 1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the ramp 48 How to investigate the relationship between force, mass and acceleration 3. Selease the trolley at the top of the ramp 49 CORE PRACTICAL 1. Set up a ramp, w			will be <u>no acceleration</u> . The object will <u>remain at constant speed.</u>
smaller in size with the thrust forces exerted on it – what is the acceleration of the object? 34 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – It will decelerate. 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? • M/s² (metres per second per second) the acceleration due gravity 40 Why is mass a scalar quantity and weight a vector quantity? • Mass is the amount of matter. 41 How is weight calculated? Weight (N) = Mass (kg) x g (N/kg) 45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength? Weight Will change depending on the gravitational field strength. the heavier th weight. (For example a 1kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon). 47 CORE PRACTICAL 1. Set up a ramp, with a trolley and light gates 47 CORE PRACTICAL 1. Set up a ramp, with a trolley and light gates 47 CORE PRACTICAL 1. Set up a ramp, with a trolley and light gates 48 Stick a card to the top of the ramp 4. Record the time it takes for the trolley to pass each light 47 CORE PRACTICAL		the acceleration of the object?	
what is the acceleration of the object? 34 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? It will decelerate. 35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? • m/s² (metres per second per second) the acceleration due gravity 40 Why is mass a scalar quantity and weight a vector quantity? • Mass is the amount of matter. 41 How is weight calculated? • Mest is a force due to gravity. 41 How is weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength. (For example a 1kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon). 47 CORE PRACTICAL 1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the ramp 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and	33	If the resistance forces on a moving object are	It will accelerate in the direction of the thrust force.
 34 If the resistance forces on a moving object are greater in size with the thrust forces exerted on it – what is the acceleration of the object? 35 Which equation states Newton's second law? 39 What are the two different units for gravity and why are they different? 40 Why is mass a scalar quantity and weight a vector quantity? 40 Why is mass a scalar quantity and weight a vector quantity? 41 How is weight calculated? 42 How can weight be measured? 43 How is weight affected by the gravitational field strength? 44 How is weight affected by the gravitational field strength? 45 How can weight be measured? 46 How is weight affected by the gravitational field strength? 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 48 Accord the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and 		smaller in size with the thrust forces exerted on it -	
greater in size with the thrust forces exerted on it – what is the acceleration of the object?35Which equation states Newton's second law?F=ma (resultant force = mass x acceleration)39What are the two different units for gravity and why are they different?• m/s² (metres per second per second) the acceleration due gravity40Why is mass a scalar quantity and weight a vector quantity?• Mass is the amount of matter. • It is a scalar quantity because it only has size (measured • Weight is a force due to gravity.41How is weight calculated?Weight (N) = Mass (kg) × g (N/kg)45How can weight be measured?Using a force meter (Newton meter).46How is weight affected by the gravitational field strength?Weight will change depending on the gravitational field str of the planet, moon etc that the object is on. The stronger the gravitational field strength, the heavier th weight. (For example a 1kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon).47CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and			
what is the acceleration of the object?35Which equation states Newton's second law?F=ma (resultant force = mass x acceleration)39What are the two different units for gravity and why are they different?• m/s² (metres per second per second) the acceleration due gravity40Why is mass a scalar quantity and weight a vector quantity?• Mass is the amount of matter.41How is weight calculated?• Meight (N) = Mass (kg) x g (N/kg)45How can weight be measured?Using a force meter (Newton meter).46How is weight affected by the gravitational field strength?Weight will change depending on the gravitational field strength of the planet, moon et c that the object is on. The stronger the gravitational field strength.47CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and	34		It will <u>decelerate</u> .
35 Which equation states Newton's second law? F=ma (resultant force = mass x acceleration) 39 What are the two different units for gravity and why are they different? • m/s² (metres per second per second) the acceleration due gravity 40 Why is mass a scalar quantity and weight a vector quantity? • N/kg (newtons per kilogram) the gravitational field strengt 41 How is weight calculated? • Mass is the amount of matter. 45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength? Weight will change depending on the gravitational field strength. the heavier th weight. (For example a 1kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon). 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley and repeat steps 4 and		-	
39 What are the two different units for gravity and why are they different? • m/s² (metres per second per second) the acceleration due gravity 40 Why is mass a scalar quantity and weight a vector quantity? • Mass is the amount of matter. 41 How is weight calculated? • Weight is a force due to gravity. 45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength? Weight will change depending on the gravitational field strength. 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the ramp 4. Record the time it takes for the trolley to pass each light		-	
are they different? gravity 40 Why is mass a scalar quantity and weight a vector quantity? • Mass is the amount of matter. 41 How is weight calculated? • Meight is a force due to gravity. 45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength? Weight will change depending on the gravitational field strength, the heavier th weight. (For example a 1kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon). 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 1. Set up a ramp, with a trolley and light gates 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 1. Set up a ramp, with a trolley and light gates 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 1. Set up a ramp, with a trolley and light gates 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 1. Set up a ramp, with a trolley and light gates 48 Neecord the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and	35	•	
 N/kg (newtons per kilogram) the gravitational field strengt Why is mass a scalar quantity and weight a vector quantity? Mass is the amount of matter. It is a scalar quantity because it only has size (measured e Weight is a force due to gravity. It has a size (measured in N) and a direction. How is weight calculated? How can weight be measured? How is weight affected by the gravitational field strength? How is weight affected by the gravitational field strength. CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration Second the time it takes for the trolley and light gates Stick a card to the top of the ramp Record the time it takes for the trolley to pass each light Increase the mass on the trolley and repeat steps 4 and 	39	• , ,	• m/s ² (metres per second per second) the acceleration due to
40 Why is mass a scalar quantity and weight a vector quantity? • Mass is the amount of matter. 41 How is weight calculated? • It is a scalar quantity because it only has size (measured • Weight is a force due to gravity. 45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength? Weight will change depending on the gravitational field strength, the heavier th weight. (For example a 1kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon). 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and 1.		are they different?	
quantity?• It is a scalar quantity because it only has size (measured • Weight is a force due to gravity. • It has a size (measured in N) and a direction.41How is weight calculated?Weight (N) = Mass (kg) x g (N/kg)45How can weight be measured?Using a force meter (Newton meter).46How is weight affected by the gravitational field strength?Weight will change depending on the gravitational field str of the planet, moon etc that the object is on. The stronger the gravitational field strength, the heavier th weight. (For example a 1kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon).47CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and			 N/kg (newtons per kilogram) the gravitational field strength
 Weight is a force due to gravity. It has a size (measured in N) and a direction. How is weight calculated? Weight (N) = Mass (kg) x g (N/kg) How can weight be measured? Using a force meter (Newton meter). How is weight affected by the gravitational field strength? How is weight affected by the gravitational field strength. CORE PRACTICAL CORE PRACTICAL Secribe how to investigate the relationship between force, mass and acceleration Second the relationship between force, mass and acceleration Release the trolley at the top of the ramp Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and repeat steps 4 and the step of the trolley and the step of the trolley and the steps 4 and the step of the trolley and the steps 4 and the step of the trolley and the steps 4 and the step of the trolley and the steps 4 and the step of the trolley and the step of the trolley and the steps 4 and the step of the trolley and the steps 4 and the step of the trolley and the step	40		 Mass is the amount of matter.
41 How is weight calculated? Weight (N) = Mass (kg) x g (N/kg) 45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength? Weight will change depending on the gravitational field strength, the heavier the stronger the gravitational field strength, the heavier the weight. (For example a 1kg mass bag of sugar will weigh 9.: earth, and only 1.6N on the moon). 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light		quantity?	• It is a scalar quantity because it only has size (measured in kg).
41 How is weight calculated? Weight (N) = Mass (kg) x g (N/kg) 45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength? Weight will change depending on the gravitational field strength is strength? 47 CORE PRACTICAL Weight will change a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley Stick a card to the top of the ramp 4. Record the time it takes for the trolley to pass each light Stick a card to the top of the trolley and repeat steps 4 and			 Weight is a force due to gravity.
45 How can weight be measured? Using a force meter (Newton meter). 46 How is weight affected by the gravitational field strength? Weight will change depending on the gravitational field strength is on. 46 How is weight affected by the gravitational field strength? Weight will change depending on the gravitational field strength, the heavier the weight. 47 CORE PRACTICAL 1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and			 It has a size (measured in N) and a direction.
 46 How is weight affected by the gravitational field strength? 46 How is weight affected by the gravitational field strength? 47 CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration 47 CORE PRACTICAL 1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and 5. 	41	How is weight calculated?	Weight (N) = Mass (kg) x g (N/kg)
strength?of the planet, moon etc that the object is on. The stronger the gravitational field strength, the heavier the weight. (For example a 1kg mass bag of sugar will weigh 9 earth, and only 1.6N on the moon).47CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and	45	How can weight be measured?	Using a force meter (Newton meter).
strength?of the planet, moon etc that the object is on. The stronger the gravitational field strength, the heavier the weight. (For example a 1kg mass bag of sugar will weigh 9 earth, and only 1.6N on the moon).47CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and 1.	46	How is weight affected by the gravitational field	Weight will change depending on the gravitational field strength
The stronger the gravitational field strength, the heavier the weight. (For example a 1kg mass bag of sugar will weigh 9. earth, and only 1.6N on the moon).47CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration1. Set up a ramp, with a trolley and light gates 2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and			
 earth, and only 1.6N on the moon). CORE PRACTICAL Describe how to investigate the relationship between force, mass and acceleration Stick a card to the top of the trolley Release the trolley at the top of the ramp Record the time it takes for the trolley to pass each light Increase the mass on the trolley and repeat steps 4 and 5 			The stronger the gravitational field strength, the heavier the
 47 CORE PRACTICAL 47 CORE PRACTICAL 47 Describe how to investigate the relationship between force, mass and acceleration 48 Set up a ramp, with a trolley and light gates 40 Set up a ramp, with a trolley and light gates 40 Set up a ramp, with a trolley and light gates 40 Set up a ramp, with a trolley and light gates 41 Set up a ramp, with a trolley and light gates 42 Stick a card to the top of the trolley 43 Release the trolley at the top of the ramp 44 Record the time it takes for the trolley to pass each light 45 Increase the mass on the trolley and repeat steps 4 and 10 steps 			weight. (For example a 1kg mass bag of sugar will weigh 9.8N on
Describe how to investigate the relationship between force, mass and acceleration2. Stick a card to the top of the trolley 3. Release the trolley at the top of the ramp 4. Record the time it takes for the trolley to pass each light 5. Increase the mass on the trolley and repeat steps 4 and			earth, and only 1.6N on the moon).
force, mass and acceleration3. Release the trolley at the top of the ramp4. Record the time it takes for the trolley to pass each light5. Increase the mass on the trolley and repeat steps 4 and	47		
4. Record the time it takes for the trolley to pass each light5. Increase the mass on the trolley and repeat steps 4 and			
5. Increase the mass on the trolley and repeat steps 4 and		force, mass and acceleration	
			4. Record the time it takes for the trolley to pass each light gate
50 As speed increases, what happens to air resistance? As an object gets faster, air resistance increases			5. Increase the mass on the trolley and repeat steps 4 and 5
	50	As speed increases, what happens to air resistance?	As an object gets faster, air resistance increases.
	51	What is terminal velocity?	When the <u>forces of a moving object are balanced</u> and there is <u>no</u>
			resultant force, the object travels at a constant speed this is called
terminal velocity.			terminal velocity.

52	What is the acceleration of an object that has reached terminal velocity?	0 m/s^2 (It cannot accelerate as there is no resultant force)
53	Describe how the forces acting on a ball change as it starts to fall from the sky	 At the start of the fall the weight is greater than air resistance The weight remains constant but the air resistance increases as the ball accelerates Until the weight is balanced out by the air resistance. At this point the ball is moving at a constant speed, this is known as the terminal velocity.
54	H) Explain what is happening to the velocity of an object which is moving in a circle.	Because velocity is a vector and the <u>direction of the object is</u> <u>changing constantly</u> , the <u>velocity of the object is also changing</u> <u>constantly</u> .
55	H) When an object moves in a circle at a constant speed, why is it accelerating?	There is a <u>change of velocity over time</u> , therefore the object is accelerating.
56	H) When an object moves in a circle at a constant speed, what causes the acceleration? (what must there be for an object to move in a circle?)	A resultant force.
57	H) What is this resultant force called?	Centripetal force.
58	H) What direction is the centripetal force in?	Towards the centre of the circle.
59	H) What is inertial mass?	It is a measure of how difficult it is to change the velocity of the object. It is defined as the ratio of resultant force over acceleration (m= F/a) as described by newton's second law.
60	H) Describe what is meant by momentum	Momentum is a measure of the tendency of an object to keep moving, or how hard it is to stop it moving.
61	H) State the equation for momentum	Momentum (kg m/s) = mass (kg) x velocity (m/s)
65	H) State the equation for force which substitutes momentum	Force = change in momentum / time
68	H) What is meant by conservation of momentum?	The total momentum before a collision is equal to the total momentum after a collision. (Remember - direction is really important here!).
69	What is the thinking distance?	The distance travelled in the time it takes the driver to react. It is measured in m.
70	Which factors affect the thinking distance?	 speed of the vehicle the driver's reaction time (age, drugs, alcohol, distractions etc) weather
71	What is the braking distance?	The distance travelled in the time it takes between the driver applying the brakes and the vehicle stopping. It is measured in m.
72	Which factors affect the braking distance?	 mass of the vehicle speed of the vehicle the condition of the brakes road conditions (frictional forces) weather
73	How do you calculate stopping distance?	Thinking distance + Braking distance. It is measured in m.
74	How do crumple zones, air bags and seat belts help protect passengers?	They all are designed to <u>increase the time it takes to reduce the</u> <u>momentum of the vehicle to zero</u> and so they <u>reduce the force</u> on the passengers.
75	Estimate the forces involved in: A. a squash ball hitting a wall B. a car hitting a wall C. 2 cars hitting each other	 A. A squash ball hitting a wall 30N B. a car hitting a wall 200 000N C. 2 cars hitting each other 300 000N

Topic 5- Conservation of energy (Paper 5)

3	What is the law of conservation of energy?	Energy can never be created or destroyed, only transferred from one store (or form) to another.
4	Name 9 different forms of energy and an example of an object which emits them	 Light – phone Sound- radio Thermal- fire Kinetic- a person cycling Chemical- battery/food/fuel Electrical- television Elastic- bow and arrow

		8. Gravitational potential energy- a plane in flight
		9. Nuclear- uranium
5	Describe the energy transfer taking place in a loudspeaker.	A loudspeaker transfers <u>electrical energy</u> into <u>sound energy</u>
6	A student uses a solar powered battery charger to charge some batteries. What is the form of energy transferred into the battery charger?	<u>light energy</u> → electrical energy → <u>chemical energy</u>
7	An objected is lifted upwards, what is the energy transfer that takes place?	Kinetic energy is transferred to gravitational energy.
8	A moving object crashes into a wall. What types of energy does its kinetic energy get transferred into?	Heat Sound
9	An object is accelerated by a force, what type of energy does it gain?	Kinetic energy
10	A moving vehicle applies its brakes, what type of energy does its kinetic energy get transferred into and where is most of this energy stored?	HeatStored in the brakes
11	What happens to electrical energy when using a kettle to boil water?	Some is transferred usefully to heat energy in the water and some is wasted heating the surroundings.
12	When energy transfers happen in a closed system, what is the net change in the total energy of that system?	There is no net change (of total energy) in a closed system.
13	What is efficiency?	A measure of how much of the energy is transferred into a useful energy type.
14	When a mechanical process wastefully transfers energy to heat, what happens to the heat?	Heat is dissipated, heating the surroundings.
15	A stiff bicycle chain wastefully dissipates some energy as heat and sound. Describe how this unwanted energy transfer can be reduced.	Lubricate the chain to reduce friction.
16	H) Suggest how efficiency can be increased	 Reducing the amount of waste energy Reducing friction by using lubrication Ensuring all fuels are burned in an engine Using all of the heat produced that would have otherwise been wasted
17	A boiler's hot water tank wastefully dissipates some of its heat energy to its surroundings. Describe how this unwanted energy transfer can be reduced.	Insulate the tank to slow down the rate at which heat is lost to the surroundings.
18	State the three ways that energy can be transferred by heating.	Conduction, convection, radiation.
19	Describe conduction	In conduction vibrations are passed between particles in a solid.
20	Describe convection	In convection, particles that are heated become less dense and rise. A convection current is produced.
21	Describe radiation	Radiation is the only energy transfer which can travel in a vacuum, it is an electromagnetic wave.
22	If the thickness of a buildings walls are increased, what will happen to its rate of cooling?	Rate of cooling will decrease, because less energy escapes.
23	If a building is made of materials that have a decreased thermal conductivity, what will happen to its rate of cooling?	Rate of cooling will decrease, because less energy escapes.
24	State the equation for energy efficiency.	efficiency = $\frac{(useful energy transferred by the device)}{(total energy supplied to the device)}$
26	At which point will the ball have the maximum/greatest gravitational potential energy?	B has the greatest gravitational potential energy

27	What energy changes are occurring between B and C?	Gravitational potential energy is decreasing as it transfers into an increasing amount of kinetic energy, thermal energy and sound energy
28	State the equation for calculating a change in gravitational potential energy.	change in gravitational potential energy (J) = mass (kg) × gravitational field strength (N/kg) × change in vertical height (m) Δ GPE= m x g x Δ h
31	State the equation for calculating the kinetic energy of an object.	kinetic energy (J) = $1/2$ × mass (kg) × speed ² ((m/s) ²) KE = $1/2$ x m x v ²
34	State 2 non-renewable energy sources.	 Fossil fuels (oil, natural gas and coal) Nuclear power
35	Suggest disadvantages to using nuclear power	 Waste produced is radioactive and will be dangerous for millions of years Expensive to dispose of waste Expensive to build power station Expensive to decommission (dismantle power station safely) Any major accidents would have serious consequences
36	Why are many countries trying to reduce the amount of fossil fuels they use?	 To reduce pollution and contribution to climate change. To make remaining supplies last longer.
37	Which type of fossil fuel power station releases the least pollution (per unit of electrical energy produced)?	Natural gas
38	Name 6 renewable power sources.	 Solar power Wind turbines Hydro-electricity Tidal power Bio-fuel/biomass Geothermal power
39	Why are bio-fuels considered to be "carbon neutral"?	They release the same amount of carbon dioxide when burning the plant as the amount of carbon dioxide absorbed by the plant as it grew
41	Why are bio-fuels not always completely "carbon- neutral"?	Additional carbon dioxide is released farming the bio-fuel crops and in the process of turning them into fuel.
42	Give one reason why is it currently impractical to use renewable resources and nothing else?	-Many renewable resources take up a lot of space. -Some renewables (e.g. solar) aren't always available. -Renewables can be expensive to set up.

Topic 6- Electromagnetic Induction (Paper 6)

1	Describe the interaction of like magnetic poles	They repel
2	Describe the interaction of unlike magnetic poles	They attract
3	Name 4 magnetic materials.	 iron cobalt nickel steel
4	What is an induced magnet?	An object which is only a magnet only because it is in the magnetic field of another magnet
5	Name a material that an induced magnet could be made from.	any from iron, cobalt, nickel, steel
6	What is the difference between a permanent and induced magnet?	A permanent magnet is always magnetic An induced magnet is only magnetic when it is in the field of another magnet
7	What is a magnetic field?	The space around a magnet which affects magnetic materials
8	How can you find the shape of a magnetic field?	Use iron filings or plotting compasses
9	Describe how to use plotting compasses	1. Place your magnet on a sheet of paper

		 Draw a dot on the piece of paper close to the magnet Place the compass so the N pole is next to the dot Draw a new dot at the S pole of the compass Place the compass so the N pole is next to the new dot and continue to repeat until the field reaches the edge of the sheet or returns to the magnet
10	Describe the shape of a magnetic field on a bar magnet or Earth	The magnetic field occurs all around a magnet/Earth. The magnetic field is strongest where lines are closer together.
11	Explain what evidence is used to support the theory that the Earth's core is magnetic	 <u>Compass needles always points to</u> a position near the <u>Earth's</u> <u>north pole</u> <u>A magnet suspended on a string will tilt</u> relative <u>to the</u> <u>horizon</u>tal <u>by different amounts</u> <u>in different places</u>, compass needles are weighted to keep them level
12	Describe how to show that current can create a magnetic field	Pass a current through a wire
13	Describe what effects the strength of the magnetic field in an electromagnetic field	 Increase the current passing through the wire Decrease the distance from the wire
14	What is a solenoid?	A coil of wire with a current flowing through it (another name for an electromagnet)
15	How can you increase the magnetic field of an electromagnet/solenoid?	 Place an iron core in the centre Increase current Increase number of coils
16	Describe the magnetic field inside a solenoid.	Uniform, along the centre of the coil
17	How can you create a magnetic field around a wire?	Pass a current through it
18	How can you change the direction of the field around a wire?	Change the direction of the current
19	Why is the magnetic field of a solenoid stronger inside the coil than outside it?	The fields from the two halves of the coil <u>reinforce each other in</u> <u>the core to provide a strong almost uniform field</u> and <u>partially</u> <u>cancel each other out to give a weaker magnetic field outside the</u> <u>coil</u>
20	H) Describe what a current carrying conductor (e.g. a wire) placed near a magnet experiences	A force that is equal and opposite to the magnet
21	H) Explain how a force is generated when using magnetic fields and a current carrying wire	 When a wire carrying a current is placed in a magnetic field A force occurs because the wire creates a magnetic field Which interacts with the magnetic field between the magnets Creating a force at a perpendicular angle to the magnetic field
22	H) Recall Fleming's left hand rule	The force produced is perpendicular to both the current and magnetic field thumb Movement Forefinger Field (N to S) second finger Current (+ to -)
23	 H) On the diagram draw the following: Flow of current Magnetic field Force acting on wire Figure 10 Magnet Wire held between magnets Magnet State St	Figure 10 Magnet Magnet Magnet Magnet Magnet Magnet Magnet Switch

24	H) Recall the equation for calculating the force on a conductor at right angles to a magnetic field	F = B x I x /
25	H) A 50m long wire carries a current of 1.5A at right angles to the Earth's magnetic field. The magnetic flux density of the magnetic field is 0.000 08N/A m. Calculate the force on the wire	Equation: F = B x I x / Substitute: F = 0.000 08 x 1.5 x 50 Calculate: 0.000 08 x 1.5 x 50 = 0.006 Units: 0.006N
26	Describe the magnetic field between two flat magnets.	Uniform – has the same strength and direction everywhere
27	What is the motor effect?	A force produced when a current flows in a magnetic field
28	What does a transformer do?	Changes the potential difference of an AC electricity supply

Topic 7- Magnetism and their motorised effect (Paper 6)

1	H) Recall factors that affect the size and direction of an	 The number of turns in a coil of wire
	induced potential difference	How fast the magnetic field changes or moves past the coil
		The direction of current
2	H) Describe how the magnetic field produced opposes	If potential difference causes a current to flow in a wire, the
	the original change	magnetic field of this current opposes the original change
3	H) Explain how an alternating current in one circuit can	1. An alternating current in the primary coil creates a
	induce a current in another circuit in a transformer	continuously changing magnetic field
		2. This changing magnetic field induces a changing magnetic
		field in the secondary coil of the transformer
		3. This in turn creates an alternating current in the secondary
		coil
4	H) What effect does a transformer have on alternating	A transformer can change the size of an alternating voltage
	voltage?	
5	What is the national grid?	The wires and transformers that transfers electricity around
		the country
6	Explain why electrical energy is transferred at high	It improves efficiency by reducing heat loss in the transmission
	voltages in the national grid	lines by allowing a lower current to be used.
7	Explain why electrical energy is transferred at low	It ensures voltages are low enough to be <u>safe</u> and <u>reduce the</u>
	voltages for domestic use	risk of electrocution
8	Explain where and why step-up and step-down	Step up transformers are used in power stations before the
	transformers are used in the transmission of electricity	national grid
	in the national grid	Step down transformers are used before electricity enters
		factories and again before it enters homes, offices and shops.
9	Describe what change happens when a step-up	As the voltage increases the current decreases
	transformer is used.	
10	H) State the equation used to calculate the number of	primary voltage = coils on primary
	coils or voltage on a transformer	secondary voltage coils on secondary
12	Use the power equation for calculating potential	$V_P \times I_P = V_S \times I_S$

Year 11 Physics Core Questions

Topic 8- Particle Model (Paper 6)

		1
1	Use a simple kinetic theory model to explain solids in terms	Particles vibrate
	of movement and arrangement of particles	 Forces of attraction between particles are strong
		 Which is why particles do not flow
		 Solids keep their shape
		 Solids cannot be compressed
2	Use a simple kinetic theory model to explain liquids in	Particles flow
	terms of movement and arrangement of particles	 Particles have moderate forces of attraction
		 Liquids take shape of container
		• Liquids flow
		 Liquids cannot be compressed
3	Use a simple kinetic theory model to explain gases in terms	Particles move fast
	of movement and arrangement of particles	Particles are far apart
		Gases expand to fill container
		Gases can be compressed
4	Recall and use the density equation	Density (kg/m ³) = mass (kg) / volume (m ³)
8	CORE PRACTICAL	1. Fill a displacement can with water until the water just
	Describe how to investigate the densities of solids and	starts to come out of the spout
	liquids	2. Find the mass of the solid using a balance
		3. Hold a measuring cylinder under the spout
		4. Add the solid to the water and measure the volume of
		water displaced
		5. Calculate the density using the mass and volume
		measurements
9	Explain the differences in density between the different	Solids are the most dense because there are more particles
	states of matter in terms of arrangements of atoms or	in the <u>same volume</u> .
	molecules	
10	Describe what happens to mass when substances melt,	Mass is conserved
4.4	freeze, evaporate, boil, condense or sublimate.	The superification of a sub-standard in the supervision
11	Define the term specific heat capacity	The specific heat capacity of a substance is the <u>energy</u>
		<u>needed</u> to <u>increase the temperature</u> of <u>1 kg</u> of the
10	Define the term specific latent heat	substance by 1 °C.
12	Define the term specific latent fleat	The specific latent heat (L) of a substance is the <u>energy</u> <u>needed</u> to <u>melt or boil 1 kg</u> of the substance.
13	Explain the difference between specific heat capacity and	Specific heat capacity is the amount of energy needed to
12	specific latent heat	heat 1kg by 1°C,
	speeme latent near	Whereas specific latent heat is the amount of energy
		needed to melt or boil 1kg of a substance.
20	Explain ways of reducing unwanted energy transfer through	Gas is a poor conductor of heat
20	thermal insulation	So using layers to trap gases keeps objects warm
		<u>Fluffy/hairy materials contain a lot of air so trap heat</u>
		Bubble wrap and polystyrene have air trapped in it making
21	CORE PRACTICAL	them good insulators
21		them <u>good insulators</u> 1. Place a polystyrene cup on a balance and fill with water
21	Describe how to investigate the properties of water by	them good insulators
21		them good insulators1. Place a polystyrene cup on a balance and fill with water2. Measure the mass of the water filled polystyrene cup
21	Describe how to investigate the properties of water by	 them good insulators 1. Place a polystyrene cup on a balance and fill with water 2. Measure the mass of the water filled polystyrene cup 3. Carefully remove the cup and add a thermometer

22	Describe what is happening in a temperature-time graph for melting ice	A. Freezing B. Melting C. Condensing D. Evaporating/boiling
	Energy (J) duckingsciencebombs.wordpress.com	
23	Explain the pressure of a gas in terms of the motion of its particles	Gas pressure is caused by the <u>force of the collisions</u> <u>between</u> the <u>particles and the</u> walls of its <u>container</u> .
24	Explain the effect of changing the temperature of a gas on the velocity of its particles	When the <u>temperature is increased</u> , the <u>gas particles move</u> <u>faster</u> and with <u>more energy</u> . The <u>collisions become more frequent</u> and have <u>greater</u> <u>force</u> .
25	Describe the term absolute zero	Absolute zero is the point at which the <u>pressure of a gas</u> <u>drops to zero</u> because the <u>particles are no longer moving</u> .
26	What is the temperature of absolute zero?	-273 °C

Topic 9- Electricity (Paper 6)

1	Describe the structure of the atom including the				
	position, charge and masses of each sub-atomic		Proton	Neutron	Electron
	particle	Location	Nucleus	Nucleus	Orbits/shells
		Charge	Positive	Neutral	Negative
		Mass	1	1	1/1835 (0)
2	Draw electric circuit component symbols	⊢			
	A) Battery	A) 1- 1-			
	B) Resistor	- <u></u>			
	C) Diode	В)			
	D) Switch				
	E) Variable resistor	C) U			
	F) Thermistor G) Voltmeter	D)			
	H) Lamp				
	I) LDR	E) 7			
	J) Ammeter				
	K) Motor	F) -			
	L) LED	G) -(v)-			
		D) $\xrightarrow{-\infty}$ $\xrightarrow{-}$ E) $\xrightarrow{-}$ $\xrightarrow{-}$ F) $\xrightarrow{-}$ $\xrightarrow{-}$ G) $\xrightarrow{-}$ $\xrightarrow{-}$ H) $\xrightarrow{-}$ $\stackrel{-}{\otimes}$ $\xrightarrow{-}$			
		J) ()			
		К) — М —			
		L) — 💭 —			
3	Describe the differences between series and parallel	Series circuits			
	circuits	Current is the	-		
		Voltage provid			red by the
			n a series circuit		
		Parallel circuit	ts have junction	s where electri	city splits/re-
		joins		4 3	
		Current splits		-	
		 Voltage provid components 	aed by the powe	er supply is the	same across all
8	What happens to the current if you increase the	The current incr	eases		
	potential difference (voltage) of a power pack/battery				

9	If you increase the resistance in a circuit, what happens to the current?	It decreases.
10	What is the unit for current, how do you measure it	Measured in Amps (A), using an ammeter which is placed in
10	and how do you place it in a circuit?	series in a circuit
11	What is the unit for potential difference, what	Measured in Volts (V), using a voltmeter which is placed
	equipment do you use to measure it and how do you	parallel across a component
	place it in a circuit?	·
12	What is meant by potential difference?	Energy transferred per unit charge
		Therefore, a volt = a joule per coulomb
13	Recall the equation for calculating energy transferred	Energy transferred = charge moved x potential difference
	in a circuit	
17	Explain what electric current is	The rate of flow of charge/electrons
18	Recall the equation for calculating charge	Charge = current x time
23	What is needed to cause current to flow in a closed circuit?	A potential difference is needed
24	Explain the relationship between potential difference	A large potential difference causes electrons to flow faster in a
	in the power supply and current in a circuit	circuit, and so increases current.
25	What component can be used to change the resistance in a circuit?	Variable resistor
26	Explain how changing resistance affects the current	Increasing resistance decreases current
27	Explain what causes resistance in a circuit	Electrons collide with metal ions
28	Explain what happens when resistance increases in a	When resistance increases in a circuit, electrons collide more
	circuit	frequently with metal ions.
		This decreases the flow of electrons.
		Which is a <u>decrease of current</u> .
		And an <u>increase of resistance</u> .
29	Suggest how to decrease resistance in a metal	Use metal wires with lower resistance
		Use shorter wires
		Use thicker wires
30	Recall the equation for calculating potential difference	Decrease the temperature Potential difference = current x resistance
31	What is the unit for resistance?	Ohms (Ω)
1 76	1 Why is resistance greater when resistors are connected	When resistors are connected in series the total resistance of
35	Why is resistance greater when resistors are connected in series?	When <u>resistors are connected in series</u> , the <u>total resistance</u> of the circuit is increased because the nathway becomes harder
35	Why is resistance greater when resistors are connected in series?	When <u>resistors are connected in series</u> , the <u>total resistance</u> of the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through.
35		the circuit is increased because the pathway becomes harder
	in series?	the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through.
36	in series? Why is resistance less when resistors are connected in parallel?	the circuit <u>is increased</u> because the <u>pathway becomes harder</u> <u>for current to flow through</u> . When <u>resistors are connected in parallel</u> the total <u>resistance</u> of the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u> .
	in series? Why is resistance less when resistors are connected in	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance</u> of the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or
36	in series? Why is resistance less when resistors are connected in parallel?	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance</u> of the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor
36	in series? Why is resistance less when resistors are connected in parallel?	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance</u> of the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component
36 39	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit?	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> <u>for current to flow through</u>. When <u>resistors are connected in parallel</u> the total <u>resistance of</u> the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component
36	in series? Why is resistance less when resistors are connected in parallel?	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance</u> of the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component
36 39	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> <u>for current to flow through</u>. When <u>resistors are connected in parallel</u> the total <u>resistance of</u> the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component
36 39	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> <u>for current to flow through</u>. When <u>resistors are connected in parallel</u> the total <u>resistance of</u> the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component
36 39	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> <u>for current to flow through</u>. When <u>resistors are connected in parallel</u> the total <u>resistance of</u> the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component
36 39	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> <u>for current to flow through</u>. When <u>resistors are connected in parallel</u> the total <u>resistance of</u> the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component
36 39 40	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance of</u> the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component
36 39	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance of</u> the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component Using a <u>potential divider is best</u> to test a component.
36 39 40	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance of</u> the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component Using a <u>potential divider is best</u> to test a component. This is because the <u>current</u> through the component <u>and the</u>
36 39 40	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance</u> of the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component Using a <u>potential divider is best</u> to test a component. This is because the <u>current</u> through the component <u>and the potential difference</u> across it <u>can be reduced to zero</u>.
36 39 40	in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance</u> of the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component Using a <u>potential divider is best</u> to test a component. This is because the <u>current</u> through the component <u>and the potential difference</u> across it <u>can be reduced to zero</u>. This is <u>not possible with a variable resistor</u>.
36 39 40 41	 in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit Which method is best for testing components? 	 the circuit <u>is increased</u> because the <u>pathway becomes harder</u> for current to flow through. When <u>resistors are connected in parallel</u> the total <u>resistance of</u> the circuit <u>is less</u> than the resistance of the individual resistors. This is <u>because there are now more paths for the current</u>. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component Using a <u>potential divider is best</u> to test a component. This is because the <u>current</u> through the component and the <u>potential difference</u> across it <u>can be reduced to zero</u>.
36 39 40 41	 in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit Which method is best for testing components? CORE PRACTICAL 	 the circuit is increased because the pathway becomes harder for current to flow through. When resistors are connected in parallel the total resistance of the circuit is less than the resistance of the individual resistors. This is because there are now more paths for the current. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component Using a potential divider is best to test a component. This is because the current through the component and the potential difference across it can be reduced to zero. This is not possible with a variable resistor. 1) Set up the circuit so the resistor is in series with an
36 39 40 41	 in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit Which method is best for testing components? CORE PRACTICAL Describe how to construct an electrical circuit to investigate the relationship between potential difference, current and resistance for a filament lamp 	 the circuit is increased because the pathway becomes harder for current to flow through. When resistors are connected in parallel the total resistance of the circuit is less than the resistance of the individual resistors. This is because there are now more paths for the current. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component Using a potential divider is best to test a component. This is because the current through the component and the potential difference across it can be reduced to zero. This is not possible with a variable resistor. 1) Set up the circuit so the resistor is in series with an ammeter and a voltmeter is parallel to the component 2) Set the power supply to the lowest voltage 3) Record the current and voltage
36 39 40 41	 in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit Which method is best for testing components? CORE PRACTICAL Describe how to construct an electrical circuit to investigate the relationship between potential 	the circuit <u>is increased</u> because the <u>pathway becomes harder</u> <u>for current to flow through</u> . When <u>resistors are connected in parallel</u> the total <u>resistance</u> of the circuit <u>is less</u> than the resistance of the individual resistors. This is because there are now more paths for the current. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component 3. A voltmeter is placed parallel to the component Using a <u>potential divider is best</u> to test a component. This is because the <u>current</u> through the component <u>and the</u> <u>potential difference</u> across it <u>can be reduced to zero</u> . This is <u>not possible with a variable resistor</u> . 1) Set up the circuit so the resistor is in series with an ammeter and a voltmeter is parallel to the component 2) Set the power supply to the lowest voltage 3) Record the current and voltage 4) Repeat step 2-3 increasing the voltage of the power supply
36 39 40 41 45	 in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit Which method is best for testing components? CORE PRACTICAL Describe how to construct an electrical circuit to investigate the relationship between potential difference, current and resistance for a filament lamp and resistor.	 the circuit is increased because the pathway becomes harder for current to flow through. When resistors are connected in parallel the total resistance of the circuit is less than the resistance of the individual resistors. This is because there are now more paths for the current. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component 3. A voltmeter is placed parallel to the component Using a potential divider is best to test a component. This is because the current through the component and the potential difference across it can be reduced to zero. This is not possible with a variable resistor. 1) Set up the circuit so the resistor is in series with an ammeter and a voltmeter is parallel to the component 2) Set the power supply to the lowest voltage 3) Record the current and voltage 4) Repeat step 2-3 increasing the voltage of the power supply 5) Replace the resistor with 2 filament lamps
36 39 40 41 45 46	 in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit Which method is best for testing components? CORE PRACTICAL Describe how to construct an electrical circuit to investigate the relationship between potential difference, current and resistance for a filament lamp and resistor. How does a diode work?	 the circuit is increased because the pathway becomes harder for current to flow through. When resistors are connected in parallel the total resistance of the circuit is less than the resistance of the individual resistors. This is because there are now more paths for the current. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component Using a potential divider is best to test a component. This is because the current through the component and the potential difference across it can be reduced to zero. This is not possible with a variable resistor. 1) Set up the circuit so the resistor is in series with an ammeter and a voltmeter is parallel to the component 2) Set the power supply to the lowest voltage 3) Record the current and voltage 4) Repeat step 2-3 increasing the voltage of the power supply 5) Replace the resistor with 2 filament lamps It only allows current to pass through it in one direction.
36 39 40 41 45	 in series? Why is resistance less when resistors are connected in parallel? How are components tested in a circuit? Draw a circuit diagram to show how to test a component in a circuit Which method is best for testing components? CORE PRACTICAL Describe how to construct an electrical circuit to investigate the relationship between potential difference, current and resistance for a filament lamp and resistor.	 the circuit is increased because the pathway becomes harder for current to flow through. When resistors are connected in parallel the total resistance of the circuit is less than the resistance of the individual resistors. This is because there are now more paths for the current. 1. The component is connected to a potential divider or variable resistor 2. An ammeter is placed in series with the component 3. A voltmeter is placed parallel to the component 3. A voltmeter is placed parallel to the component Using a potential divider is best to test a component. This is because the current through the component and the potential difference across it can be reduced to zero. This is not possible with a variable resistor. 1) Set up the circuit so the resistor is in series with an ammeter and a voltmeter is parallel to the component 2) Set the power supply to the lowest voltage 3) Record the current and voltage 4) Repeat step 2-3 increasing the voltage of the power supply 5) Replace the resistor with 2 filament lamps

		2) Einschmenisten 11
	1) Filament lamp	3) Fixed resistor – graph b
	2) Diode 3) Fixed resistor	
	3) Fixed resistor	
	Ь	
48	Explain why the resistance changes for a filament lamp	As voltage increases, wire gets hotter, metal ions increase
	as the potential difference of the power supply is	vibrations and there is an increase in electron collisions,
	increased	resulting in <u>higher resistance</u> .
49	Explain why the resistance changes for a diode as the	Resistance is very high in the opposite direction, which does
	potential difference of the power supply is increased	not allow current to flow. In the normal direction, resistance
		increases as metal ions vibrate more resulting in more
		electron collisions.
50	Explain why the resistance changes for a fixed resistor	At a constant temperature metal ions do not increase in
	as the potential difference of the power supply is	vibrations, this maintains the number of electron collisions,
	increased	this results in the <u>resistance staying the same</u> .
51	What is an LDR?	Light dependent resistor
		The resistance in the component changes depending on the light intensity shining on it
52	How does the resistance of a light dependant resistor	As light intensity increases, the resistance decreases, which
52	change with light intensity?	increases the current (flow of electrons)
53	What happens to the resistance and current in a	As the temperature increases, the resistance decreases, which
	thermistor as you increase temperature?	increases the current (flow of electrons)
54	What does resistance transfer electrical energy into?	Thermal energy
55	What happens to thermal energy generated from	It is dissipated to the surroundings
	resistors?	
56	Name a device where the heating effect of an electric	Toaster, kettle, oven
	current is useful.	
57	Name a device where the heating effect of an electric	Light bulb, computer, radio
	current is not useful.	
58	Describe the advantages of the heating effect of an	When used in a device which uses the heating effect to
	electric current	transfer thermal energy usefully e.g. a kettle transfers thermal
		energy generated from a resistor to heat water.
59	Describe the disadvantages of the heating effect of an	When a device transfers thermal energy to the surroundings
	electric current	as a waste energy. E.g. a laptop transfers thermal energy to
		the surroundings instead of light or sound energy which are
60	What is the unit for energy transferred?	useful forms of energy transfers. Joule
61	How is energy calculated using an equation? (hint:	Energy = Current x Voltage x time E = I x V x t
01	combine the power calculations together!)	Energy – Current x voltage x time E – TX v X t
63	What is the unit for electrical power?	Watt
64	What is power?	The rate of energy transferred from one form to
04		another/others.
65	Describe the relationship between the power ratings	The higher the power rating, the quicker the energy transfer
	for domestic electrical appliances and the changes in	taking place.
	stored energy when they are in use	
66	What unit do we measure power in?	Watts (W)
67	How can you calculate power using the energy	Power = Energy transferred/time taken P = E / t
	transferred in an object and the time it is used for?	
71	How can you calculate power using current and	Power = Current x voltage P = I x V
	voltage?	
75	Recall the electrical power equation which uses current	Power = current ² x resistance $P = I^2 x R$
	and resistance	
79	What do the letters d.c. mean?	Direct current
80	What devices supply DC current?	Batteries and cells
81	Describe direct current	Electrons flow in one continuous direction
82	What do the letters a.c. mean?	Alternating current
L	1	

83	What supplies AC current?	Generators
84	Describe alternating current	Electrons vibrate back and forth thousands of times a second
85	How many volts is the UK mains voltage?	230 V
86	What is the UK mains frequency?	50 Hz
87	Describe the function of the Earth wire	Used for safety
		Provides <u>a short circuit</u> between the <u>casing of the device</u> and the <u>ground/Earth</u>
88	Describe the function of the neutral wire	Creates a return path for the electricity to the power station
89	Describe the function of the live wire	Connects the appliance to the generators at the power station
90	Describe the function of the fuse	Used for safety
		Has a maximum volume of current allowed to flow through it
		Will melt if the current exceeds maximum amount
		Causing a break in the circuit
		Electricity/current can no longer flow
91	Explain why fuses should be connected in the live wire	So that <u>if the current</u> flowing through the live wire <u>increases to</u>
	of a domestic circuit	a dangerous level, the fuse would break and prevent electricity
		flowing through the plug and <u>to the appliance</u> .
92	Explain why switches should be connected in the live	So that the electrical supply to the appliance can be turned off
	wire of a domestic circuit	to stop current flowing to the appliance.
93	Explain the dangers of providing any connection	If the live wire makes a connection with the earth wire on the
	between the live wire and earth	appliance casing
		It <u>creates a completed circuit</u>
		Electricity will not flow through the appliance.
		It results in a <u>very large current</u>
		Because the <u>metal case has a very small resistance.</u> Very dangerous, electrical shock is likely.
94	State the potential difference for each wire	a) OV
94	a) Earth wire	b) 0V
	b) neutral wire	c) 230V
	c) live wire	
95	Describe how circuit breakers work	Circuit breakers are like a re-usable fuse which you can turn on
		and off.
		They will turn off automatically and instantly, if the current
		flowing through your home <u>is too large</u>
96	Describe the disadvantages of fuses	A fuse needs to be replaced when it breaks.
		A fuse has to melt and break before current can no longer flow
		through it- taking a much longer time and so it is still possible
		to be electrocuted if you are touching the device.
97	Describe the advantages of circuit breakers	A circuit breaker can be turned back on once a fault occurs
		A circuit breaker stops large volumes of current flowing
		through it <u>very quickly</u>

Topic 10- Forces and matter (Paper 6)

1	What is the minimum number of forces that need to be applied to an object to stretch/bend or compress it?	Тwo
2	What is meant by distortion?	Distortion is a change of shape when there is a force applied.
3	Describe the difference between elastic and inelastic distortion	Elastic object: Returns to its original shape when forces are removed Inelastic object: Does not return to its original shape
4	Recall the equation for calculating linear elastic distortion	Force (N) = spring constant (N/m) x extension (m)
8	Recall the equation for calculating the work done in a stretching spring	Energy transferred (J)= 0.5 x spring constant (N/m) x extension ² (m)
12	<u>Describe</u> the relationship between the <u>length</u> of a spring and the force applied to it <u>before</u> it reaches its elastic limit	The force and length have a <u>linear relationship</u> . The graph would be a <u>straight line</u> (<u>directly proportional</u>)
13	<u>Describe</u> the relationship between the <u>extension</u> of a spring and the force applied to it <u>before</u> it reaches its elastic limit	The force and length have a <u>linear relationship</u> . The graph would be a <u>straight line</u> (<u>directly proportional</u>)

14	Explain the relationship between the extension of a spring and the force applied to it before it reaches its elastic limit	As the force doubles, the extension will double as well.
15	<u>Describe</u> the relationship between the <u>extension</u> of a spring and the force applied to it <u>after</u> it reaches its elastic limit	The force and extension would have a <u>non-linear relationship</u> . The graph would be a <u>curved line</u> .
16	CORE PRACTICAL Describe how to investigate the extension and work done when applying forces to a spring	 Set up the apparatus so a spring is hanging from a clamp stand Measure the length of the spring using a ruler Hang a 1N weight on the spring Measure the length of the spring Calculate the extension length (extended length – original length) Repeat first 5 steps with increasing weights
17	How would you calculate the spring constant from a graph of extension against force?	From the gradient of the graph (extension along the x axis and force on the y axis).
18	Do stiffer springs have a higher or lower spring constant?	Higher because you would need to apply more force to get the same extension.

Topic 11- Energy- forces doing work (Paper 6)

1	Describe the energy changes when a motor lifts a	The motor uses stored chemical energy (in the fossil fuel
	container	burned) and transfers this into thermal, sound and kinetic
		energy. The kinetic energy is transferred into GPE as the
		container is lifted.
2	Describe the energy changes when a person uses a bow	A person uses stored chemical energy and is transferred into
	and arrow	kinetic energy as the person bulls the bow back. This is
		transferred into stored elastic energy. When released the stored
		elastic energy is <u>transferred into kinetic energy and GPE</u> until
		the bow falls to the floor where it is transferred into sound and
2	Duran an anna tha a fan dia anna fan a tauch	thermal energy.
3	Draw an energy transfer diagram for a torch	Electrical energy Lamp Surroundings
4	Describe what is happening in this energy transfer	A <u>plant is absorbing light energy</u> from the sun and <u>transferring it</u>
	diagram	into chemical energy through the process of photosynthesis.
	Light energy Chemical Fossil	Over millions of years the plant has been transformed into a
	Sun Plant Sun fuels	fossil fuel which is a stored chemical energy.
5	Draw an energy transfer diagram for a nuclear power	Uranium Boiler Kinetic energy Turbine Generator
	station	
6	Identify the different ways that the energy of a system	1) through work done by forces
	can be changed	2) in electrical equipment
		3) in heating
7	Recall the equation for work done	Work done (J) = Force (N) x Distance moved in direction of
		resultant force (m)
8	What is the unit for work done?	Joules
9	Describe how to measure the work done by a crane	Measure the distance the object has moved using a ruler
	moving a container	Measure the weight of the container using a Newton meter
4.5		Calculate work done by multiplying the distance and force
16	Explain, using examples, how in all system changes	All energy transfers eventually <u>dissipate heat and sound energy</u>
	energy is dissipated so that it is stored in less useful	to the surroundings which is <u>wasteful</u> .
	ways	For example, a torch transferring light and heat energy to the surroundings
17	How are all mechanical processes wasteful?	Mechanical processes become wasteful as they cause a rise in
1		temperature so dissipating thermal energy to the surroundings
18	What is a definition of power?	The amount of energy transferred every second (Joule per
		second (J/S))
19	Recall the power equation	Power (W) = work done (J) x time (s)
20	What is the unit for power?	Watt (W)
21	What can be measured in joules per second?	Power
	· · · · ·	· · · · · · · · · · · · · · · · · · ·

23	When the power of an object is 2W, how much energy	2J/s
	is transferred every second?	
26	How can you combine work done = force x distance and	Power = <u>(force x distance)</u>
	power = work done / time	time

Topic 12- Forces doing work (Paper 6)

1	Describe, with examples, how objects can interact a) at a distance without contact	a) gravity, magnetism, static electricity b) contact force, thrust, up thrust, air resistance, friction, water
	b) by contact	resistance
2	Draw a vector diagram to show how the Earth and moon interact	$\rightarrow \leftarrow$
3	Draw a vector diagram to show how 2 oppositely charged objects interact	\longleftrightarrow
4	Draw a vector diagram to show how ca book resting on a table interact with the table	\uparrow
5	H) Draw a free body force diagram for a duck sitting on the surface of the water	Upthrust
6	H) Draw a free body force diagram for a person walking at constant speed	Air resistance Friction
7	H) Draw a free body force diagram for a car accelerating	Air resistance
8	H) Describe how to calculate the resultant force using a vector diagram	 (If required) Draw arrows to scale to represent the forces acting on an object Draw lines with the existing force arrows to make a parallelogram Draw a line diagonal of the parallelogram, this is the resultant force Measure the length of the resultant force line and use the scale to calculate the size
9	H) Draw a scale drawing of a vector diagram (1cm = 10N) and calculate the resultant force for the free body diagram below:	
10	H) Draw a scale drawing of a vector diagram (1cm = 10N) and calculate the resultant force for the free body diagram below: $15N \qquad \qquad$	15N 21N 15N
11	H) Draw a scale drawing of a vector diagram (1cm = 10N) and calculate the resultant force for the free body diagram below: 60N $140N$	60N 140N 152N
12	H) Explain what the resultant force is on this object	1) Add forces acting in the same direction

