Core questions

Physics GCSE

Equations and Key concepts Paper 1 (topics 2,3,4,5,6 and 7) Paper 2 (topics 8,9,10,11,12,13,14 and 15)

Introduced in KS3 in italics Higher tier only in bold

Also includes:

- Reminders about the resources available on-line
- Paper 1 and paper 2 overviews
- Application equations (the ones you don't have to memorise)
- Core practical overview

The equations that you need to learn

In Italics means you were introduced to it in KS3

In bold means it is higher tier only

Paper	Equation	
1	distance travelled = average speed × time	
1	acceleration = change in velocity ÷ time taken	
	$a = \frac{(v - u)}{t}$	
1	force = mass × acceleration	
	$F = m \times a$	
1	weight = mass × gravitational field strength	
	$W = m \times g$	
1	momentum = mass × velocity $p = m \times v$	
1 and 2	change in gravitational potential energy = mass × gravitational field strength × change in vertical height $\Delta GPE = m \times g \times \Delta h$	
1 and 2	kinetic energy = $\frac{1}{2} \times \text{mass} \times (\text{speed})^2$ $KE = \frac{1}{2} \times m \times v^2$	
1 and 2	<u>(</u> useful energy transferred by the device <u>)</u> efficiency = (total energy supplied to the device)	
1	wave speed = frequency × wavelength $v = f \times \lambda$	

1	wave speed = distance ÷ time
	$\begin{array}{c} x \\ y = \end{array}$
2	work done = force × distance moved in the direction of the force
	$E = F \times d$
2	power = work done ÷ time taken
	P = - t
2	moment of a force = force × distance normal to the direction of the force
2	energy transferred = charge moved × potential difference
	$E = Q \times V$
2	charge = current × time
	$Q = I \times t$
2	potential difference = current × resistance
	$V = I \times R$
2	power = energy transferred ÷ time taken
	E
	P = - t
2	electrical power = current × potential difference
	$P = I \times V$
	electrical power = current squared × resistance
	$P = I^2 \times R$
2	density = mass ÷ volume
	ρ= V
2	force exerted on a spring = spring constant × extension
	$F = k \times x$

2	pressure = force normal to surface ÷ area of surface
	F
	P =
	A

In Italics means you were introduced to it in KS3

In bold means it is higher tier only

Physics Key Concepts (topic 1)

What is the standard unit and symbol for	
A) distance	A) metre, m
B) mass	B) kilogram, kg
<i>C</i>) time	C) second, s
D) temperature	D) kelvin, K
What is the derived unit and symbol for	
A) Frequency	A) hertz, Hz
B) Force	B) newton, N
C) Energy	C) joule, J
D) Power	D) watt, W
E) Pressure	E) pascal, Pa
F) Electric charge	F) coulomb, C
G) Electric potential difference	G) volt, V
H) Electric resistance	H) ohm, Ω
I) Magnetic flux density	I) tesla, T
Write the decimal of	
A) giga (G)	A) 1,000,000,000 (10 ⁹)
B) mega (M)	B) $1,000,000 (10^6)$
C) kilo (k)	C) 1000 (10 ³)
D) centi (c)	D) 0.01 (10- ²)
E) milli (m)	$E) 0.001 (10^{-3})$
F) micro (μ)	F) 0.000001 (10 ⁻⁶)
G) nano (n)	G) 0.00000001 (10 ⁻⁹)
How do you convert minutes into hours	Divide minutes value by 60
How do you convert minutes into seconds	Multiply minutes value by 60
In calculation questions what must you	Substitute in values in standard units, show working out
remember to do?	clearly and show the units on the answer.
	Triangles are a tool to help us re-arrange equations.

Topic 2 Motion and forces

Why are displacement, velocity, acceleration, forces	Because they have size (magnitude) and
and momentum all vector quantities and not scalar	direction. (scalar quantities only have
quantities?	size)
Is displacement a vector or a scalar?	Vector
Is distance a vector or a scalar?	Scalar
Is speed a vector or a scalar?	Scalar
Is velocity a vector or a scalar?	Vector
Is acceleration a vector or a scalar?	Vector
Is force a vector or a scalar?	Vector
Is weight a vector or a scalar?	Vector
Is mass a vector or a scalar?	Scalar
Is momentum a vector or a scalar?	Vector
Is energy a vector or a scalar?	Scalar
What is velocity?	The speed in a particular direction.
What are the units for speed?	Metres per second (m/s)
What are the units for time?	Seconds (s)
What are the units for distance?	Metres (m)
What are the units for velocity?	Metres per second (m/s)
What are the units for displacement?	Metres (m)
What does the gradient of a distance-time graph tell	The speed.
you about the motion?	
What is the shape of a distance-time graph when the	A straight diagonal line – the steeper the
object is travelling at a constant velocity?	gradient, the faster the speed.
What is the shape of a distance-time graph when the	A horizontal straight line – distance is not
object is stationary?	changing with time.
What is the shape of a distance-time graph when the	A curved line – as the speed increases
object is accelerating?	the gradient of the curve gets steeper.
What are the units for acceleration?	<i>m</i> /s ² (<i>metres per second per second</i>)
What is the shape of a velocity-time graph when the	A horizontal straight line – velocity is not
object is travelling at a constant velocity?	changing with time.
What is the shape of a velocity-time graph when the	A straight horizontal line along the x-axis
object is stationary?	at 0m/s.
What is the shape of a velocity-time graph when the	A straight diagonal line going up– the
object is accelerating?	steeper the gradient, the more rapid the
	acceleration.
What is the shape of a velocity-time graph when the	A straight diagonal line going down – the
object is decelerating?	steeper the gradient, the more rapid the
	deceleration.
How do you calculate the acceleration or deceleration	Work out the gradient of the line.
from a velocity-time graph?	
How do you work out the distance travelled using a	Calculate the area under the line on the
velocity-time graph?	graph.

What equipment can be used to experimentally find the	You can time it with a stopwatch over a
speed of a moving object?	set distance but this will be subject to
	human error. A more accurate way would
	be to use light gates. As the object
	passes the first gate. the timing starts and
	as it crosses the second gate the timing
	stops. If the distance is known between
	the two points the average speed can be
	calculated Using a card of known length
	to interrupt the light beam the actual
	sneed at each light gate can be
	calculated. This would allow changes in
	speed to be measured, for example
	speed to be measured, for example
Estimate the speeds of these: a string brooze, sound in	Strong broozo 25m/s, sound in air
L'sumate the speeds of these. a stilling bleeze, sound in	220m/s, walking page 1 4m/s, sould in all
an, waiking pace, cycling pace, car in built up area, car	soon fm/s, walking pace 1.411/s, cycling
and light in a vacuum	pace onlys, car in built up area 10.5m/s,
and light in a vacuum.	Em/a a farm 49m/a an aaranlana 250
	55m/s, a leny 18m/s, an aeropiane 250
M/h at is the excelenation due to every ity on earth $Q(x)$	m/s and light in a vacuum 30000000m/s.
What is the acceleration due to gravity on earth? (g)	10 m/s^2
Estimate the accelerations of these: an ordinary car, a	An ordinary car 3 m/s ² , a supercar 6 m/s ² ,
supercar, a person on a bicycle, a rollercoaster and the	a person on a bicycle 0.5m/s ² , a
builet from a gun	rollercoaster 40m/s ² and a bullet 1000000
	m/s²
What is a free-body diagram used to show?	The size and direction of the different
	forces acting on a single object.
What are action and reaction forces?	When 2 bodies interact (for example, your
	foot and a football) they exert forces on
	each other that are equal in size and
	opposite in direction.
What is the extra left over force called in an	Resultant
What are forces measured in?	Newtons (N).
How do you calculate the resultant force?	You subtract the total of the forces in one
	direction from the total force in the
	onnosite direction
What do resultant forces change?	The speed direction and/or the shape of
What do resultant forees shange.	an object
When the forces on an object are balanced what is the	Zero – there is no resultant force and so
resultant force and what effect will it have?	there will be no change to the objects
	speed, direction or shape.
Name two common resistance forces that slow objects	Friction and air resistance.
down.	
If the resistance forces on a moving object are equal in	There will be no acceleration – there is no
size with the thrust forces exerted on it – what is the	resultant force to make any change so
acceleration of the object?	the object will continue to move at the
	same speed in a straight line.

If the resistance forces on a moving object are smaller	It will accelerate in the direction of the
in size with the thrust forces exerted on it – what is the	thrust force.
acceleration of the object?	
If the resistance forces on a moving object are greater	It will decelerate.
in size with the thrust forces exerted on it – what is the	
acceleration of the object?	
Which equation states Newton's second law?	F=ma (resultant force = mass x
	acceleration)
What are the units for mass?	Ka (kiloarams)
What are the two different units for gravity and why are	m/s ² (metres per second per second) the
they different?	acceleration due to gravity, and N/kg
	(newtons per kilogram) the gravitational
	field strength
Why is mass a scalar quantity and weight a vector	Mass is the amount of matter. It is a
quantity?	scalar quantity because it only has size
quantity :	(measured in kg) Weight is a force due
	to gravity. It has a size (measured in N)
	and a direction
How is weight calculated?	and a direction. $M_{\text{orb}}(ka) = M_{\text{orb}}(ka) \times a (m/c^2 \text{ or } M/ka)$
How can weight be measured?	Using a force mater (Newton mater)
How call weight offostod by the gravitational field	Using a force meter (Newton meter).
now is weight anected by the gravitational heid	weight will change depending on the
strengtn?	gravitational field strength of the planet,
	moon etc that the object is on. The
	stringer the gravitational field strength,
	the neavier the weight. (For example a
	1kg mass bag of sugar will weigh 9.8N on
	earth, and only 1.6N on the moon).
A coin and a feather are dropped from the same height	The coin because it will have less air
on earth. Which will hit the ground first and why?	resistance acting on it.
A coin and a feather are dropped from the same height	They will hit the ground together because
on the moon. Which will hit the ground first and why?	there is no air resistance on the moon (in
	a vacuum) and so both the coin and the
	feather will accelerate at the same rate.
As speed increases, what happens to air resistance?	As an object gets faster, air resistance
	increases.
Why does air resistance not continue to increase with	There will be a point at which the air
speed indefinitely?	resistance will be large enough to
	balance with the force that is moving the
	object. At this point the object can no
	longer accelerate, it can't get any faster
	and so air resistance cannot increase any
	more.
What is terminal velocity?	When the forces of a moving object are
	balanced and there is no resultant force,
	the object travels at a constant speed this
	is called terminal velocity.
What is the acceleration of an object that has reached	0 m/s ² (It cannot accelerate as there is no
terminal velocity?	resultant force)

When an object moves in a circle at a constant	No. The direction is changing and
speed, is the velocity constant? Explain!	velocity is a vector quantity, the
	direction is important.
When an object moves in a circle at a constant	There is a change of velocity over
speed, why is it accelerating?	time, therefore the object is
	accelerating.
When an object moves in a circle at a constant	A resultant force.
speed, what causes the acceleration? (what must	
there be for an object to move in a circle?)	
What is this resultant force called?	Centripetal force.
What direction is the centripetal force in?	Towards the centre of the circle.
What is inertial mass?	It is a measure of how difficult it is to
	change the velocity of the object. It is
	defined as the ratio of resultant force
	over acceleration (m= F/a) as
	described by newton's second law.
What are the units for momentum?	Kilogram metres per second (Kg m/s)
Why is momentum a vector quantity?	It has a size and a direction.
What is meant by conservation of momentum?	The total momentum before a collision
	is equal to the total momentum after a
	collision. (Remember - direction is
	really important here!).
How do crumple zones, air bags and seat belts help	They all are designed to increase the time
protect passengers?	it takes to reduce the momentum of the
	vehicle to zero and so they reduce the
	force on the passengers. F= (mv – mu)/t
What is the thinking distance?	The distance travelled in the time it takes
	the driver to react. It is measured in m.
What is the braking distance?	The distance travelled in the time it takes
	between the driver applying the brakes
	and the vehicle stopping. It is measured
	in m.
How do you calculate stopping distance?	Thinking distance + Braking distance. It is
	measured in m.
Which factors affect the stopping distance?	Mass of the vehicle, speed of the
	vehicles, the driver's reaction time (age,
	drugs etc), the condition of the brakes
	and the road conditions (frictional forces).
Estimate the forces involved in a squash ball hitting a	A squash ball hitting a wall 30N, a car
wall, a car hitting a wall and 2 cars hitting each other.	hitting a wall 200 000N and 2 cars hitting
	each other 300 000N.

How does the distance required for a vehicle to stop in	The faster the vehicle the further it's
an emergency vary with speed?	stopping distance. The thinking distance
	increases by 3m for every 10mph
	increased, it is a linear relationship. The
	braking distance increases with speed in
	a non-linear way – this is because the
	speed is squared in the kinetic energy
	equation and so the braking distance
	increases by 4 when the speed is
	doubled.
How are work done to bring an object to rest and	They are the same thing. All of the kinetic
kinetic energy transferred related?	energy has to be transferred (to thermal
	energy and sound) until there is no more
	movement. The kinetic energy transferred
	is equal to the work done (by friction)
	stopping the object.

Question	Answer
State the 2 energy transfers that happen in a solar battery charger.	Light energy to electrical energy Electrical energy to chemical energy
If 200 J of electrical energy is supplied to a bulb and 50 J is transferred as light energy, how much energy is wasted as heat?	200 - 50 = 150 J
What is the law of conservation of energy?	Energy can never be created or destroyed, only transferred from one store (or form) to another.
Draw a Sankey diagram to show that 100J of electrical energy is transferred into 10J of light energy and ?J of thermal (or heat) energy.	Electrical energy 10 J Heat energy 90 J
An objected is lifted upwards, what is the energy transfer that takes place?	Kinetic energy is transferred to gravitational energy.
A moving object crashes into a wall. What types of energy does its kinetic energy get transferred into?	Heat and sound
An object is accelerated by a force, what type of energy does it gain?	Kinetic energy
A moving vehicle applies its brakes, what type of energy does its kinetic energy get transferred into and where is most of this energy stored?	Heat, stored in the brakes
What happens to electrical energy when using a kettle to boil water?	Some is transferred usefully to heat energy in the water and some is wasted heating the surroundings.
When energy transfers happen in a closed system, what is the net change in the total energy of that system?	There is no net change (of total energy) in a closed system.
When a mechanical process wastefully transfers energy to heat, what happens to the heat?	Heat is dissipated, heating the surroundings.
A stiff bicycle chain wastefully dissipates some energy as heat and sound. Describe how this unwanted energy transfer can be reduced.	Lubricate the chain to reduce friction.
A boiler's hot water tank wastefully dissipates some of its heat energy to its surroundings. Describe how this unwanted energy transfer can be reduced.	Insulate the tank to slow down the rate at which heat is lost to the surroundings.
State the three ways that energy can be transferred by heating.	Conduction, convection, radiation.
If the thickness of a buildings walls are increased, what will happen to its rate of cooling?	Rate of cooling will decrease.
If a building is made of materials that have a decreased thermal conductivity, what will happen to its rate of cooling?	Rate of cooling will decrease.
State the equation for energy efficiency.	efficiency = $\frac{(\text{useful energy transferred by the device})}{(\text{total energy supplied to the device})}$

A bulb is supplied with 200 J of electrical energy, but only 50 J is transferred as useful light energy. Calculate the efficiency of the bulb.	<i>Efficiency</i> = (useful energy transferred) \div (total energy supplied) = 50 \div 200 = 0.25 (or 25%)
Explain how efficiency can be increased. Give an example.	Efficiency can be increased by reducing the proportion of energy dissipated wastefully. E.g. Insulating a boiler tank reduces heat lost to surroundings, so a larger proportion of the input energy can be used to heat the water.
State the equation for calculating a change in gravitational potential energy.	change in gravitational potential energy (J) = mass (kg) × gravitational field strength (N/kg) × change in vertical height (m) Δ GPE= m x g x Δ h
A 25 kg object on Earth (g=10 N/kg) is lifted 2 m. Calculate its change in GPE.	$\Delta GPE= m x g x \Delta h$ = 25kg x 10N/kg x 2m = 500 J
State the equation for calculating the kinetic energy of an object.	kinetic energy (J) = $\frac{1}{2} \times \text{mass}$ (kg) × speed ² ((m/s) ²) KE = $\frac{1}{2} \times \text{m} \times \text{v}^2$
A 10 kg object is travelling at 5 m/s. Calculate its kinetic energy.	$KE = \frac{1}{2} \times m \times v^{2}$ = 0.5 × 10kg × (5m/s) ² = 0.5 × 10 × 25 = 125 J
State 2 non-renewable energy sources.	Fossil fuels (oil, natural gas and coal) and nuclear power.
Why are many countries trying to reduce the amount of fossil fuels they use?	<i>To reduce pollution and contribution to climate change.</i> <i>To make remaining supplies last longer.</i>
Which type of fossil fuel power station releases the least pollution (per unit of electrical energy produced)?	Natural gas
State 3 renewable power sources.	Solar power, wind turbines, hydro-electricity, tidal power, bio- fuel/biomass & geothermal power.
Why are bio-fuels considered to be "carbon neutral"?	In theory, they release the same amount of carbon dioxide as was taken from the atmosphere by the plants (that they're made from) as they grew.
State two ways of using solar power.	Solar cells convert energy from sunlight directly into electrical energy. Sunlight can be used to heat water in solar panels.
Why are bio-fuels not always completely "carbon-neutral"?	Additional carbon dioxide is released farming the bio-fuel crops and in the process of turning them into fuel.
Give one reason why is it currently impractical	-Many renewable resources take up a lot of space.
to use renewable resources and nothing else?	-Some renewables (e.g. solar) aren't always available. -Renewables can be expensive to set up.

Topic 4 waves

What do waves transfer?	Energy and information but not matter.
What evidence is there that wayes do not transfer	For water waves, a float on the surface of the water
matter?	will move only up and down not across the water
	For sound wayse, an air particle will vibrate back and
	For sound waves, an an particle will vibrate back and
	forth not travel across the room.
Give examples of longitudinal waves	Sound waves (including ultrasound and infrasound)
	and seismic P (primary) waves.
Which type of wave has the direction of the vibration	Longitudinal
parallel to the direction of energy travel?	
Give examples of transverse waves	All of the electromagnetic waves including light,
	seismic S (secondary) waves, water waves and waves
	on a string.
Which type of waves has the direction of the	Transverse
vibration is perpendicular to the direction of energy	
travel?	
What is the wavelength and what is it measured in?	The length of 1 complete wave cycle. It is measured
what is the wavelength and what is it measured in:	in motors (m)
	in meters (m).
	wavelength
What is the amplitude and what is it measured in?	The distance from the centre of a wave to the top of
what is the amplitude and what is it medsured in:	the wave It is measured in meters (m)
	the wave. It is measured in meters (m).
	wavelength
	-amplitude
What is the frequency of a wave and what is it	The number of waves in 1 second and the unit is
measured in?	Hertz (Hz)
What is wave velocity and how is it different to wave	Wave velocity describes both how fast the wave is
speed?	travelling (m/s) and in which direction. It is a vector
speed.	quantity. Wave speed is only how fast the wave is
	quantity. Wave speed is only now fast the wave is going (still m/s). It is a scalar quantity
What is the menied of a more and substicit measured	The time for 1 complete more It is recommed in
what is the period of a wave and what is it measured	The time for T complete wave. It is measured in
	seconds (s).
what is the name given to describe the surface over	wavefront.
which a wave has maximum and minimum values	
(peaks and troughs)?	
As the wavelength of a wave increases, how is its	The frequency would decrease.
frequency changed? (Assuming that it is travelling at	
a constant speed).	
As the speed of a wave increases, what happens to	The wavelength would get longer.
the wavelength of the wave? (Assuming that the	
frequency is constant).	
What 2 variables affect the speed of a wave?	The kind of wave it is and what the wave is moving
	through.
What happens to the speed of sound as you move	It increases. This is because there are more particles
from gas to liquid to solid?	to pass on the vibrations.

What is the speed of sound in a vacuum?	0 m/s. Sound cannot travel through a vacuum as there are no particles to pass on the vibrations.
Which two equations can be used to find the velocity of a wave?	<i>Distance / time and frequency x wavelength.</i>
In calculation questions what must you remember to	Substitute in values in standard units, show working
do?	out clearly and show the units on the answer.
With not more than strend and some its fam and a 19	Triangles are a tool to help us re-arrange equations.
What are the standard units for speed?	Metres per second (m/s).
What are the standard units for time?	Metres (m).
Describe how to measure the velocity of sound in a	Use a signal generator to produce a sound of known
gas like air.	frequency. Connect 2 microphones to an oscilloscope
	to detect the sound waves in front of the speaker.
	Move 1 microphone away until the waveforms are
	aligned. Measure the distance between the
	microphones as this is the wavelength of the sound wave. The speed (in m/c) will be frequency (Up) y
	wavelength (m)
Describe how to measure the velocity of a wave in a	Use a ripple tank to create water waves Measure the
liquid like water.	distance between 2 peaks, this is the wavelength.
1	Find the frequency by counting the number of waves
	past a point in 10s and divide by 10. The speed (in
	m/s) will be frequency (Hz) x wavelength (m).
	Alternatively, mark 2 points on the side of the ripple
	tank and time now long it takes I wave to travel between the 2 points. Measure the distance of the 2
	points. The speed (in m/s) will be distance (m)
	divided by time (s).
Describe how to measure the velocity of sound in a	Suspend the steel rod and hit it with a hammer. Use a
solid like steel.	frequency app to record the peak frequency (or a
	microphone and oscilloscope). Measure the length of
	the steel rod. Wavelength = $2 \times \text{length}$ and so divide the length by 2 to find wavelength. The speed (in
	m/s) will be frequency (Hz) x wavelength (m)
What type of substances absorb waves?	Light waves are absorbed by black materials. Sound
	waves can be absorbed by soft furnishings.
What type of substances reflect waves?	Mirror and shiny materials reflect light waves.
	Hard flat surfaces reflect sound waves.
what type of substances transmit waves?	Clear materials like glass and plastic transmit light wayes. Sound can be transmitted through thin
	materials like walls, doors and windows.
What property of the wave is the behaviour	The wavelength of the wave.
(absorption, transmission, reflect or refract) dependent on?	
What happens to light as it passes from one material	Some of it will be reflected (bounced off) and some
to another?	will be refracted (bent through).
What is refraction and what causes it?	Refraction is the bending (change of direction) of a
	caused by the slowing down or speeding up of the
	wave as it travels from one density to a different
	density.
As light travels from a more dense material to a less dense material, what direction will it bend in?	Away from the normal line.
If light is allowed the travel into a glass block and	They will be parallel to each other. You might also
out of the other side again, what would you notice	notice the incident ray is slightly brighter than the
about the incident ray and the emergent ray?	emergent ray as some energy may have been
	absorbed by the glass as the wave is transmitted

If a wave travels 90 °to the surface (along the	Direction will not change but speed still will. This
normal line) of a material what will not change	means that the wavelength will change for a
and what will change?	constant frequency but the direction of the wave
	will continue in a straight line and not bend.
What happens to a water wave as it travels from	It will speed up in deeper water. This will cause
shallow water to deeper water?	the wavelength to increase (for a fixed frequency)
	and if the waves arrive at the deep water at any
	angle other than 90 °, they will change direction.

What can happen to a wave when it reaches an interface between 2 different materials?	It can be reflected, refracted, transmitted or absorbed.
What is the difference between reflection and refraction?	Reflection is when the wave is bounced back (i=r). Refraction involves changing the speed and direction of the wave as it passes into the new material (slower speed towards the normal and faster speed away from the normal).
What is the difference between absorbed and transmitted?	A transmitted wave passes through a material but an absorbed wave cannot travel though as the energy it is carrying is transferred to the material.
How are pitch and frequency related?	The higher the frequency, the higher the pitch of the sound.
The pitch of a sound is not affected as the sound wave travels from one material to another but what must change?	The velocity of the wave changes in different materials and so $(c=f\lambda)$ the wavelength must also change.
Give examples of longitudinal waves (where the direction of the vibration is the same as the direction of energy travel).	Sound waves (including ultrasound and infrasound) and seismic P (primary) waves.
Give examples of transverse waves (where the direction of the vibration is perpendicular to the direction of energy travel).	All of the electromagnetic waves including light etc and seismic S (secondary) waves.
What type of wave is a sound wave?	Longitudinal wave – vibrations of particles are parallel to the direction of energy transfer (wave movement).
How does a sound wave travel through air?	The particles of the air vibrate back and forth as the energy is transferred (as the wave passes).
How are sound waves affected as they move from air to solid steel?	When the sound wave reaches the steel, some of the energy is reflected and some is absorbed by it and some is transmitted through the steel. The sound wave causes a change in pressure on the surface of the steel which in turn causes the steel particles to vibrate. The speed of the wave will increase and the energy can be passed on as both longitudinal waves and transverse waves.
Where do sound waves enter the ear?	The ear canal
hear?	vibrate by sound waves, passing on the vibrations into the inner ear.
What do the tiny bones in the ear do?	The bones (hammer, anvil and stirrup) amplify the vibrations before they are passed on to the cochlea.

What is the cochlea?	A coiled tube containing a liquid that is about 9mm in diameter. The vibrations are passed on to the liquid and then tiny hairs inside the cochlea detect these vibrations and create electrical impulses. Each hair is connected to a neurone that sends an
What connects the ear to the brain?	The auditory nerve – electrical impulses
Which parts of the ear are the vibrations occurring in a solid?	Ear drum and ear bones
Which parts of the ear are the vibrations occurring in a liquid?	Cochlea
Which parts of the ear are the vibrations occurring in a gas?	Ear canal
What range of frequencies can the human ear detect?	20 Hz to 20,000 Hz
Why is the human ear limited to hearing a range of frequencies between 20 Hz and 20,000 Hz?	The membrane that the cochlea is made from differs in thickness and stiffness, so the part of the membrane that vibrates depends on the frequency of the sound. Different thicknesses of membrane vibrate best at different frequencies. The base is thickest and stiffest and so it detects high frequencies but only up to 20,000 Hz. The apex is thinnest and most flexible, detecting low frequencies but only as low as 20 Hz.
Define ultrasound	Sound with a frequency greater than 20,000 Hz.
Define infrasound	Sound with a frequency less than 20 Hz.
How do mice, use ultrasound?	To communicate with each other.
How do bats use ultrasound?	To detect objects around them using the reflection of ultrasonic waves.
What is sonar?	Sonar equipment can be used on boats and submarines to find the depth of the sea, or detect fish by sending out an ultrasonic pulse and timing how long it takes to receive the echo (reflected wave) back to the detector (microphone).
Which equation can be used to calculate the depth or distance from time and wave velocity (for example when using sonar equipment)?	Distance (or depth) in m = speed in m/s x time in s. It is important to remember that the distance calculated is there and back and so don't forget to divide it by 2!
Why is ultrasound used in sonar?	This high frequency sound wave travels long distances in water (much further than light) but also does not diffract (spread out) too much and so it is reflected straight back.
Give uses of ultrasound.	Sonar, communication between animals like mice, navigation for animals like bats, medical scanning and ultrasonic cleaners.
Where is ultrasound used in diagnosis?	Scanning during pregnancy and to locate kidney stones, cysts etc in internal organs
Why is a gel used in ultrasound scanning?	To help prevent the sound waves just being reflected off the skin.

How does ultrasound show a picture of a developing foetus?	A probe emits the ultrasound and then receives the echoes (reflections) which occur at each interface (ie between bone and fat) and uses the calculated time and intensity to build a picture as the ultrasound as it is reflected back differently from different types of tissue.
Where is ultrasound used in treatment?	To break up kidney stones and in treating muscle problems.
Give uses of infrasound.	Communication between animals, like elephants, detection of animal movement in remote places, detection of volcanic eruptions and meteors.
What causes seismic waves?	Earthquakes or explosions.
Why is it difficult to predict earthquakes?	The earth's tectonic plates are constantly moving and there are never two occasions when the amount of energy needed to move the surface is the same.
Name 2 types of seismic wave.	Longitudinal (P) waves and Transverse (S) waves. (Where P = primary and S = secondary).
What causes these seismic waves to reflect and refract?	Both waves move through the center of the Earth which is made of different materials. When these waves reach a boundary they can be reflected or refracted.
What is a seismometer?	A piece of equipment that can be used to detect seismic waves.
How can the epicentre of an earth quake be found?	We know that P waves travel faster than S waves. Both are produced at the same time so by measuring the time difference between their arrival at the seismometer, we can work out how far away the epicentre is from the monitoring station. If there are at least 3 monitoring stations the epicentre can then be triangulated.
How do seismic waves help us understand the structure of the Earth?	Infrasound can travel a long way, the whole diameter of the Earth. Using information about the time that the seismic waves arrive in different places around the world and the speed of the waves in different rocks, scientists have been able to model the paths taken by the waves through the Earth as they are reflected and refracted in the same patterns wherever the earthquake occurs.
What is the S-wave shadow zone?	A place where no S waves are detected. It will be on the opposite side of the Earth to the earthquake and is caused because S waves cannot travel through a liquid and so part of Earth's core must be liquid. The outer core is liquid.

What is the P-wave shadow zone?	An area where no P waves are detected (or very few and weak P waves). There is a big change of direction between a wave that just skims the outer core and one that enters it which leaves a shadow area where none are detected because of this greater diffraction. This confirms that the outer core must be a liquid. The detection of weak P waves in this area could only happen if the inner core was solid because something solid had to reflect these waves.
Why do the earths tectonic plates move?	There are convection currents in the earth's Mantle (Hot liquid rock underneath the earth's crust) that force liquid rock up between plate boundaries forcing the plates to move apart.
What can P-waves travel through?	P-waves can travel through solid and liquid at speeds of about 10km/s. So, these waves can travel from one side of earth through to the opposite point.
What can S-waves travel through?	S-waves can travel through solids but NOT liquids at speeds of about 6km/s. So, these waves cannot travel through the liquid outer core of the earth and cannot be detected at the opposite point on the earth.
What causes an earthquake?	At plate boundaries, tectonic plates slide past one another.

Topic 5 Light and the electromagnetic spectrum

What do waves transfer?	Energy from the source to the observer. They can
	transfer information but not matter.
All of the electromagnetic waves including light are	Transverse waves
what type of wave?	
Which type of waves has the direction of the	Transverse
vibration is perpendicular to the direction of energy	
travel?	
What is the wavelength and what is it measured in?	The length of 1 complete wave cycle. It is measured
	in meters (m).
	wavelength
	amplitude
What is the frequency of a wave and what is it	The number of waves in 1 second and the unit is
measured in?	Hertz (Hz)
What is wave velocity and how is it different to wave	Wave velocity describes both how fast the wave is
speed?	travelling (m/s) and in which direction. It is a vector
	quantity. Wave speed is only how fast the wave is
	going (still m/s). It is a scalar quantity.
What variable affects the speed of a light wave?	What the wave is moving through.
JJ 1 J 0 11111	

Which two equations can be used to find the velocity of a wave?	<i>Distance / time and frequency x wavelength.</i>
In calculation questions what must you remember to do?	Substitute in values in standard units, show working out clearly and show the units on the answer.
	Triangles are a tool to help us re-arrange equations.
Describe how to measure the velocity of sound in a solid like steel.	Suspend the steel rod and hit it with a hammer. Use a frequency app to record the peak frequency (or a microphone and oscilloscope). Measure the length of the steel rod. Wavelength = 2×10^{10} km s divide the length by 2 to find wavelength. The speed (in m/s) will be frequency (Hz) x wavelength (m).
What happens to light as it passes from one material to another?	Some of it will be reflected (bounced off) and some will be refracted (bent through).
What is refraction and what causes it?	Refraction is the bending (change of direction) of a wave as it passes between different materials. It is caused by the slowing down or speeding up of the wave as it travels from one density to a different density.
As light travels from a more dense material to a less dense material, what direction will it bend in?	Away from the normal line.
If light is allowed the travel into a glass block and out of the other side again, what would you notice about the incident ray and the emergent ray?	They will be parallel to each other. You might also notice the incident ray is slightly brighter than the emergent ray as some energy may have been absorbed by the glass as the wave is transmitted through.
If a wave travels 90 °to the surface (along the normal line) of a material what will not change and what will change?	Direction will not change but speed still will. This means that the wavelength will change for a constant frequency but the direction of the wave will continue in a straight line and not bend.
	Light manage and absorbed by black materials
what type of substances absorb waves?	Light waves are absorbed by black materials.
What type of substances absorb waves? What type of substances reflect waves?	Light waves are absorbed by black materials. Mirror and shiny materials reflect light waves.
What type of substances absorb waves? What type of substances reflect waves? What type of substances transmit waves?	Light waves are absorbed by black materials. Mirror and shiny materials reflect light waves. Clear materials like glass and plastic transmit light waves.
What type of substances absorb waves? What type of substances reflect waves? What type of substances transmit waves? What property of the wave is the behaviour (absorption, transmission, reflect or refract) dependent on?	Light waves are absorbed by black materials. Mirror and shiny materials reflect light waves. Clear materials like glass and plastic transmit light waves. The wavelength of the wave.
What type of substances reflect waves? What type of substances reflect waves? What type of substances transmit waves? What property of the wave is the behaviour (absorption, transmission, reflect or refract) dependent on? How did Herschel and Ritter discover waves outside the limit of the visible spectrum?	Light waves are absorbed by black materials. Mirror and shiny materials reflect light waves. Clear materials like glass and plastic transmit light waves. The wavelength of the wave. Herschel noticed that if you split visible light up and measured the temperatures of the different colours the red light was hottest. He then moved the thermometer just outside the red colour where he could see no light and the thermometer recorded an even higher temperature. He called this wave energy Infrared. Ritter also split visible light up but looked for wave energy at the other end of the spectrum (the other side of the violet light). He tried to detect the presence of wave energy using silver chloride that he knew reacted with violet light faster than red light. He found that an unseen energy at this point in the spectrum made the silver chloride react even quicker. He called this energy Ultraviolet.
What type of substances reflect waves? What type of substances reflect waves? What type of substances transmit waves? What property of the wave is the behaviour (absorption, transmission, reflect or refract) dependent on? How did Herschel and Ritter discover waves outside the limit of the visible spectrum? What are the colours of light in the visible spectrum? (Start with the longest wavelength)	Light waves are absorbed by black materials. Mirror and shiny materials reflect light waves. Clear materials like glass and plastic transmit light waves. The wavelength of the wave. Herschel noticed that if you split visible light up and measured the temperatures of the different colours the red light was hottest. He then moved the thermometer just outside the red colour where he could see no light and the thermometer recorded an even higher temperature. He called this wave energy Infrared. Ritter also split visible light up but looked for wave energy at the other end of the spectrum (the other side of the violet light). He tried to detect the presence of wave energy using silver chloride that he knew reacted with violet light faster than red light. He found that an unseen energy at this point in the spectrum made the silver chloride react even quicker. He called this energy Ultraviolet. Red, Orange, Yellow, Green, Blue, Indigo, Violet.
What type of substances reflect waves? What type of substances reflect waves? What type of substances transmit waves? What property of the wave is the behaviour (absorption, transmission, reflect or refract) dependent on? How did Herschel and Ritter discover waves outside the limit of the visible spectrum? What are the colours of light in the visible spectrum? (Start with the longest wavelength) What is the order of waves in the electromagnetic spectrum? (Start with the longest wavelength)	Light waves are absorbed by black materials.Mirror and shiny materials reflect light waves.Clear materials like glass and plastic transmit light waves.The wavelength of the wave.Herschel noticed that if you split visible light up and measured the temperatures of the different colours the red light was hottest. He then moved the thermometer just outside the red colour where he could see no light and the thermometer recorded an even higher temperature. He called this wave energy Infrared.Ritter also split visible light up but looked for wave energy at the other end of the spectrum (the other side of the violet light). He tried to detect the presence of wave energy using silver chloride that he knew reacted with violet light faster than red light. He found that an unseen energy at this point in the spectrum made the silver chloride react even quicker. He called this energy Ultraviolet.Radio waves, Microwaves, Infrared waves, Visible light, Ultraviolet rays, X-rays, Gamma rays.
What type of substances reflect waves? What type of substances transmit waves? What property of the wave is the behaviour (absorption, transmission, reflect or refract) dependent on? How did Herschel and Ritter discover waves outside the limit of the visible spectrum? What are the colours of light in the visible spectrum? (Start with the longest wavelength) What is the order of waves in the electromagnetic spectrum? (Start with the longest wavelength) Which part or parts of the electromagnetic spectrum can we detect with our eyes?	Light waves are absorbed by black materials. Mirror and shiny materials reflect light waves. Clear materials like glass and plastic transmit light waves. The wavelength of the wave. Herschel noticed that if you split visible light up and measured the temperatures of the different colours the red light was hottest. He then moved the thermometer just outside the red colour where he could see no light and the thermometer recorded an even higher temperature. He called this wave energy Infrared. Ritter also split visible light up but looked for wave energy at the other end of the spectrum (the other side of the violet light). He tried to detect the presence of wave energy using silver chloride that he knew reacted with violet light faster than red light. He found that an unseen energy at this point in the spectrum made the silver chloride react even quicker. He called this energy Ultraviolet. Red, Orange, Yellow, Green, Blue, Indigo, Violet. Radio waves, Microwaves, Infrared waves, Visible light, Ultraviolet rays, X-rays, Gamma rays. Only visible light.

Which end of the electromagnetic spectrum has waves of the longest wavelength?	Radio waves
Which end of the electromagnetic spectrum has waves of the highest frequency?	Gamma rays
What are the harmful effects of excessive exposure to: 1. Microwaves 2. Infrared 3. Ultraviolet	 Internal heating of body cells Skin burns Damage to surface cells and eyes, leading to skin cancer and eye conditions Mutation or damage to cells in the body
4. X-rays and gamma rays?	
What can happen to an atom if it is exposed to harmful electromagnetic waves?	The atom may gain enough energy to have an electron removed. This leaves it charged and so it becomes an ion.
As the frequency of a wave increases, what happens to the potential danger?	It increases too because of the increased energy.
What can be used to produce radio waves in a transmitter?	Oscillations in electrical circuits in the transmitter. These oscillations can induce radio waves.
Name some of the uses of: 1. Radio waves 2. Microwaves 3. Infrared 4. Visible light 5. Ultraviolet 6. X-rays 7. Gamma rays	 Broadcasting, communications and satellite transmissions. Cooking, communications and satellite transmissions Cooking, thermal imaging, short range communications, optical fibres, TV remote controls and security systems. Vision, photography and illumination. Security marking, fluorescent lamps, detecting forged bank notes, disinfecting water. Observing the internal structure of objects, airport security scanners and medical X- rays. Sterilising food and medical equipment and the detection of cancer and its treatment.
Name 3 types of ionising electromagnetic radiation that transfer energy?	Short frequency UV rays, X-rays and gamma rays
What is a spectrometer?	A device that can split up the different wavelengths of light. (It splits light into its different colours).
Name a common object that could be used as a spectrometer.	A CD or DVD or a prism (a triangular shaped piece of glass).
What is the advantage of the Hubble space telescope?	As it is situated above the atmosphere so that light from distant objects enters it without being refracted or reflected which creates clearer images.

When drawing a ray diagram, what should you remember?	Use a ruler and add an arrow to show the direction of the light ray.
How and why do we draw in the normal line?	Use a protractor to draw a dashed line 90 °to the surface because all angles are measured to this normal line
What is the law of reflection?	The angle of incident is equal to the angle of reflection
If light travels from a less dense material (like air)	The light changes direction, it is refracted towards
into a more dense material (like glass), what	the normal line because one side of the light slows
happens?	down before the other at the interface.
If light travels along the normal line from glass to air	The light speeds up but does not change direction as
what happens?	both sides of the light reach the interface together.

If light travels from a more dense material (like water) to a less dense material (like air), what	The light is refracted. It changes direction by bending away from the normal line because one side
happens (if the angle of incidence is less than the critical angle)?	of the light speeds up before the other at the interface. (Some light may also be reflected).
What is the name given to the incident angle when the angle of refraction is at 90° ?	The critical angle
What conditions must be met for total internal	The angle of incidence must be greater than the
reflection to occur?	critical angle and the light has to be travelling from a more dense material to a less dense material.
How do you see luminous objects?	They give out light which enters your eyes
How do you see non-luminous objects?	They reflect light into your eyes
what type of reflection do you get from rough surfaces?	directions (but still obeys the law of reflection).
What surfaces do you get specular reflection from?	Very smooth surfaces.
What is white light?	A mixture of different wavelengths of visible light (ROYGBIV are the colours associated with each
	wavelength, red with the longest wavelength and violet with the shortest)
How do we see white objects?	All the wavelengths of visible light are reflected off the object together.
How do we see black objects?	All the wavelengths of visible light absorbed by the object.
How do we see yellow objects?	Only light with the wavelength of yellow light is reflected from the object, all the other wavelengths/colours of light are absorbed.
How does the colour of a filter affect the light transmitted through it?	Filters are transparent materials that only allow the wavelengths of that colour to be transmitted through and all other wavelengths are absorbed. For example, a blue filter only allows through blue light, all other colours are absorbed.
A red rose has a green stem. If white light is passed through a green filter to light up the rose, how will it appear?	The stem will look green and the flower head will look black. Only green light will be transmitted by the filter (ROYBIV will all be absorbed) and so the stem can reflect the green light, looking green but the red rose head will absorb the green light and reflect no light, appearing black.
What type of lens is a converging lens?	A lens that is thicker in the middle to refract the light rays together and focus them at a point behind the lens. It will always have a positive focal length.
What type of lens is a diverging lens?	A lens that is thinner in the middle to refract the light rays away from each other and focus them at a point in front of the lens. It will always have a negative focal length.
How is the power of a lens related to its shape?	The more curved the lens, the more powerful it is.
How is the power of a lens related to its focal length?	The more powerful the lens, the shorter the focal length.

XX71 / 1 0	
What is a real image?	An image through which light rays pass, so that it
	can be seen on a screen placed at that point
What is a virtual image?	An image that light rays do not pass through; they
	only appear to come from the image.
Describe the image formed by a diverging lens	Virtual image, the right way up and diminished.
Describe the image formed by a converging lens if	Real image, inverted and diminished.
the object is more the 2 focal lengths away	
Describe the image formed by a converging lens if	Real image, inverted and magnified.
the object is between 1 and 2 focal lengths away	
Describe the image formed by a converging lens if	Virtual image, the right way up and magnified.
the object is less than 1 focal length away	
What is the relationship between temperature and	As temperature increases the intensity of the emitted
intensity of radiation emitted?	radiation increases.
How does temperature change the wavelength of the	As the temperature increases, the wavelength gets
emitted radiation?	shorter.
How can an object get warmer?	It must radiate less power (energy per second) than it
	absorbs.
How can an object get cooler?	It must radiate more power (energy per second) than
	it absorbs.
What must happen for an object to stay at the	It must radiate the same amount of power as it
same temperature?	absorbs.
same temperature? Where does the Earth absorb energy from?	absorbs. The Sun
same temperature?Where does the Earth absorb energy from?What do the atmosphere, clouds and surface of	absorbs. The Sun Reflect some energy away and absorb some
same temperature? Where does the Earth absorb energy from? What do the atmosphere, clouds and surface of Earth all do?	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space.
same temperature? Where does the Earth absorb energy from? What do the atmosphere, clouds and surface of Earth all do? What affect do scientists believe greenhouse gases	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space. Extra greenhouse gases, like carbon dioxide, are
same temperature? Where does the Earth absorb energy from? What do the atmosphere, clouds and surface of Earth all do? What affect do scientists believe greenhouse gases have on the temperature of Earth?	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space. Extra greenhouse gases, like carbon dioxide, are absorbing more energy and the Earth is getting hotter.
same temperature? Where does the Earth absorb energy from? What do the atmosphere, clouds and surface of Earth all do? What affect do scientists believe greenhouse gases have on the temperature of Earth? Which part of the electromagnetic spectrum transfers	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space. Extra greenhouse gases, like carbon dioxide, are absorbing more energy and the Earth is getting hotter. Infrared radiation
same temperature? Where does the Earth absorb energy from? What do the atmosphere, clouds and surface of Earth all do? What affect do scientists believe greenhouse gases have on the temperature of Earth? Which part of the electromagnetic spectrum transfers energy by heating?	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space. Extra greenhouse gases, like carbon dioxide, are absorbing more energy and the Earth is getting hotter. Infrared radiation
same temperature? Where does the Earth absorb energy from? What do the atmosphere, clouds and surface of Earth all do? What affect do scientists believe greenhouse gases have on the temperature of Earth? Which part of the electromagnetic spectrum transfers energy by heating? Which colour makes the best absorber of infrared	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space. Extra greenhouse gases, like carbon dioxide, are absorbing more energy and the Earth is getting hotter. Infrared radiation Matt black
same temperature? Where does the Earth absorb energy from? What do the atmosphere, clouds and surface of Earth all do? What affect do scientists believe greenhouse gases have on the temperature of Earth? Which part of the electromagnetic spectrum transfers energy by heating? Which colour makes the best absorber of infrared radiation?	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space. Extra greenhouse gases, like carbon dioxide, are absorbing more energy and the Earth is getting hotter. Infrared radiation Matt black
same temperature?Where does the Earth absorb energy from?What do the atmosphere, clouds and surface of Earth all do?What affect do scientists believe greenhouse gases have on the temperature of Earth?Which part of the electromagnetic spectrum transfers energy by heating?Which colour makes the best absorber of infrared radiation?Which colour makes the best emitter of infrared	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space. Extra greenhouse gases, like carbon dioxide, are absorbing more energy and the Earth is getting hotter. Infrared radiation Matt black Matt black
same temperature?Where does the Earth absorb energy from?What do the atmosphere, clouds and surface of Earth all do?What affect do scientists believe greenhouse gases have on the temperature of Earth?Which part of the electromagnetic spectrum transfers energy by heating?Which colour makes the best absorber of infrared radiation?Which colour makes the best emitter of infrared radiation?	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space. Extra greenhouse gases, like carbon dioxide, are absorbing more energy and the Earth is getting hotter. Infrared radiation Matt black Matt black
same temperature? Where does the Earth absorb energy from? What do the atmosphere, clouds and surface of Earth all do? What affect do scientists believe greenhouse gases have on the temperature of Earth? Which part of the electromagnetic spectrum transfers energy by heating? Which colour makes the best absorber of infrared radiation? Which colour makes the best emitter of infrared radiation? Which colour makes the best reflector of infrared	absorbs. The Sun Reflect some energy away and absorb some energy and re-radiate energy back into space. Extra greenhouse gases, like carbon dioxide, are absorbing more energy and the Earth is getting hotter. Infrared radiation Matt black Shiny white/silver

Topic 6 Radioactivity

What are the properties of alpha radiation?	Alpha particles are equivalent to a helium nucleus as they are made up from 2 protons and 2 neutrons. They have a charge of +2 and a relative mass of 4. They are highly ionising but not very penetrating. They are affected by electric and magnetic fields.
What are the properties of beta radiation?	Beta particles are high energy electrons that are released from the nucleus of the atom. They have a charge of $+1$ and a relative mass of 1/2000. They are ionising and fairly penetrating. They are affected by electric and magnetic fields.
What are the properties of gamma radiation?	Gamma is a high frequency electromagnetic wave. These waves have no charge or mass. They are weakly ionising but very penetrating. They are not affected by electric and magnetic fields. It is often released in alpha or beta decay to emit the excess energy.
What are the properties of positron radiation?	Positron particles are the anti-particle to the electron. They are released from the nucleus of the atom and have a charge of $+1$, They have a relative mass of $1/2000$. They are ionising and fairly penetrating. They are affected by electric and magnetic fields.
What is the relationship between the number of protons and the number of electrons in an atom?	They are equal and the atom has no overall charge.
What happens in beta minus decay in terms of particles?	A neutron becomes a proton + an electron. This causes the atomic number (proton number) to increase by 1 while the mass number (nucleon number) stays the same.
What happens in beta plus decay in terms of particles?	A proton becomes a neutron + a positron. This causes the atomic number (proton number) to decrease by 1 while the mass number (nucleon number) stays the same.
What is the effect on the mass number (nucleon number) in alpha decay?	Decreases by 4.
What is the effect on the mass number (nucleon number) in gamma decay?	Nothing.
What is the effect on the mass number (nucleon number) in neutron decay?	Decreases by 1.
What is the effect on the atomic number (proton number) in alpha decay?	Decreases by 2.
What is the effect on the atomic number (proton number) in gamma decay?	Nothing.
What is the effect on the atomic number (proton number) in neutron decay?	Nothing.

In a nuclear equation what do you need	The mass number (nucleon number) before with the total
to balance?	mass numbers (nucleon numbers) of the new isotope and
	released particles after and the atomic number (proton
	number) before with the total atomic numbers (proton
	numbers) of the new isotope and released particles after.
When is gamma radiation emitted?	When a radioisotope undergoes decay by alpha or beta (+
	or -) emission, the nuclear rearrangement usually results
	in the excess energy being released as gamma radiation.
What are the dangers of ionising	In low doses, can cause cancer as there may be damage to
radiation?	DNA. In high doses, can cause skin burns, radiation
	sickness and even death.
What precautions are taken to ensure the	Radiation is monitored, dose and exposure time are
safety of patients and staff involving in	limited. People are also protected with screening and
using radiation medically?	protective clothing.
What information does the atomic	How many protons there are in the nucleus of an atom,
number (proton number) tell you?	ion or isotope and so what type of atom it is.
What information does the mass number	The total number of protons + neutrons in the nucleus of
(nucleon number) tell you?	an atom.
What happens to an atom when an alpha	Electrons are pulled out of the atom, attracted by the
particle is near?	positive charge of the alpha particle and so the atom is no
	longer neutral it becomes a positive ion.
What happens to an atom when a beta	An electron is pushed out of the atom, repelled by the
particle is near?	negative charge of the beta - particle and so the atom is no
	longer neutral it becomes a positive ion. OR An electron
	is pulled out of the atom, attracted by the positive charge
	of the beta + particle and so the atom is no longer neutral
	it becomes a negative ion.
How ionising are alpha particles?	Highly ionising as they have a +2 charge.
How ionising are beta particles?	Moderately ionising as they have a -1 charge or +1.
How ionising are gamma rays?	Weakly ionising as they are uncharged.
What stops alpha particles?	A few cm of air or thin paper.
What stops beta particles?	A few mm of a metal like aluminium
What stops gamma rays?	A few cm of a dense metal like lead will significantly
	reduce the amount of gamma rays getting through.
What is meant by background radiation?	Radiation that is around us all the time.
Why are there regional variations in the	50% of the background radiation is due to radioactive
levels of background radiation?	radon gas. Granite rock contains uranium and as this
	radio-isotope breaks down it releases radon gas into the
	atmosphere. Some parts of the country such as Devon,
	Cornwall and Edinburgh have higher concentrations of
	granite in the ground and so greater amount of radon gas
	meaning the background count is greater there.
Where does most the background	Around 50% radon gas. Around 15% from rock, soil and
radiation come from?	building products emitting gamma rays. Around 10%
	medical uses like X-rays. Around 10% from cosmic rays
	from outer space and the sun. About 80% is from natural
	sources.
How much background radiation is due	Less then 1%
to the nuclear industry?	

What is meant by the activity of a	How many decays there are every second from a radio-
source?	isotope.
What is activity measured in?	Becquerels (Bq)
How does activity vary with time?	Activity decreases with time.
What is half-life?	The time it takes for half the un-decayed nuclei to decay
How do you calculate the half life from	Choose a point on the y-axis and then halve the number of
a graph?	un-decayed nuclei from the y-axis and count the
	corresponding amount of time on the x-axis.
How do you calculate half-life	Calculate the amount of time it takes to halve the activity
mathematically?	of a sample from the data provided.
What is the danger of ionising radiation?	Damage to cells and tissues causing cancers or mutations.
	Possible deformities at birth in future generations.
How should radioactive samples be	Always point sources away from yourself and others,
handled safely?	never handle sources with your fingers – use tongs, only
	remove sources from their lead lined box when in use and
	do not eat or drink when using radioactive sources.
Compare the three types of radiation	Alpha cannot penetrate. Beta would be able to penetrate
outside the body.	and would be absorbed by cells. Gamma would be able to
	completely pass through the body and would be absorbed
	by cells.
Compare the three types of radiation	Alpha would not be able to escape from the body and
inside the body.	would all be absorbed by localised cells. Beta would be
	absorbed by cells as it passed through the body. Gamma
	would be emitted from the body and would be absorbed
	by cells as it passed through the body.
Why did scientists change their ideas	Scientific knowledge changed over time as more
about radioactivity over time?	observations and data were collected.
Describe the Bohr model of the atom	It has a tiny, positively charged nucleus (containing
	almost all the mass in the form of protons and neutrons)
	surrounded by negatively charged electrons in fixed
	energy levels (orbits or shells).
What is the typical size of an atom?	$1 \ge 10^{-10} \text{ m} (0.1 \text{ nanometres})$
Describe two ways of measuring and	Geiger-Muller tube and photographic film.
detecting radiation.	
Describe the plum pudding model of the	A sphere of positive charge with electrons spread through
atom	it.
Describe Rutherford experiment and	Geiger and Marsden carried out an experiment where
state what it proved about the atom	alpha particles were fired at some gold foil. Alpha
	particles are repelled by positive charge. It was detected
	that most of the alpha particles (7999/8000) went straight
	through the foil but a small number (1/8000) of the alpha
	particles were deflected through anything from 1° to 180°
	(straight back at them).
	Rutherford explained the results and said that most of the
	atom is empty space, the nucleus is tiny. The nucleus
	contains most of the mass and it is positively charged.

Explain why ideas about the structure of	New discoveries were made (like the electron and the
the atom have changed over time.	charge on it, the neutron, proton and the positron) both
	using mathematics and experimentation.
What is the difference between contamination and irradiation?	An object or person would be contaminated if unwanted radioactive particle get on them or into them. The object or person would be irradiated if exposed to radiation.

How does half-life effect the danger of radioactivity?	The longer the half-life, the longer there will be a danger from emitted ionising radiation. Isotopes with shorter half lives will have the higher activity.
Why is americium-241 used in smoke alarms?	It is an alpha emitter with a long half-life. It ionises the air in the gap in the circuit, all the while there is no smoke. It does not need to be replaced as it will emit alpha particles for a long time.
What happens when smoke enters a smoke alarm?	The smoke particles cause the current flowing across the air gap to be decreased. When the current drops below a certain level, the alarm sounds.
How is radioactivity used in gauging thickness?	A suitable source is used on one side of the material being measured and a detector is on the other side. If the material is too thick, the count rate decreases and the rollers are moved closer together. If the material is too thin, the count rate increases and the rollers are moved further apart.
Explain why food is irradiated with gamma rays.	The microorganisms in food, decompose the food. By using gamma rays to irradiate the food, these bacteria can be killed and the food preserved for longer, without the food becoming radioactive from the process.
Explain why surgical equipment, that is sterilised using gamma rays, is sealed into bags before irradiation.	The gamma rays can easily pass through the bag, sterilising any equipment in the bag. New microorganisms are kept away from the equipment, to keep it sterile, until it is needed.
How can a gamma source be used to help find a leak in a water pipe?	A source of gamma radiation is put into the water. The gamma source is being used as a tracer. Where the water leaks into the ground, there will be more radiation given off. A Geiger-Müller tube is used to locate the point where the radiation is highest.
How is radioactivity used in treating cancers?	Radiotherapy can be used to treat cancers by directing a number of gamma rays from different directions to destroy cancer cells while minimising damage to healthy cells.
How are gamma rays used in radiotherapy?	Radiotherapy is an external treatment. High energy gamma radiation or X-rays are used over a period of time to target cancerous cells using a multiple beam approach to limit the damage to healthy cells by reducing the intensity of the radiation through them while maintaining the higher intensity needed at the site. Brachytherapy is an internal treatment which is used in specialised cases. It has the advantage of treating the cancerous cells more directly but can require surgery.

What is brachytherapy?	Brachytherapy is an internal treatment which is used in specialised
	cases. It has the advantage of treating the cancerous cells more
	directly using a radioactive wire that is inserted into the body or
	implanting radioactive seeds directly into the cancerous tumour. It can
	require surgery.
How are radioactive sources	It is possible to trace the blood flow through an organ by being
used in medical tracers?	injected into the blood stream and monitored using a gamma camera
	Gamma sources are used so that the radiation can escape from the
	body and be traced. The dose is kept as small as possible to minimise
	the effect of the jonising radiation. The half-life of the source needs to
	be short enough to make sure the patient does not remain radioactive
	but long enough to ensure the full investigation can be performed
	Tracers are often fied to a compound that is attracted to cancerous
	cells like glucose
What is a DET scop?	Desitron amission tomography can be used to detect small changes in
what is a FET scan?	colls and identify rapidly growing calls, such as concer calls. Elucrine
	18 is used because it decays by positron emission. When the emitted
	nositrons collide with electrons the two perticles are ennihilated
	positions conde with elections the two particles are animitated
	detectors detect the commo rows and can calculate the point they were
	amitted from in the body.
	DET images and CT images can be combined to provide a very vertil
	diagnostic tool
When is E 19 man d in DET	Glagnostic tool.
why is F-18 used in PE1	Fluorine-18 is used because it decays by positron emission. The
scanning?	radioisotope needs to have a short half-life, F-18 has a half-life of 110
	minutes. This is short enough to make sure the patient does not remain
	radioactive for long after the PET scan but is long enough to ensure
	the full investigation can be performed. The F-18 is tagged to glucose
XX71 1 1' .'	to form the radiopharmaceutical FDG.
Why do radioactive sources	The half-life of the source needs to be short so that the patient is not
used in PET scanners need	still radioactive after the scan and so it needs to be produced nearby
to be produced near to the	and relatively near to the time of the scan so that it remains
scanner?	radioactive for the duration of the scan. F-18 has a half-life of 110
	minutes.
What are the advantages of	No carbon dioxide emissions (greenhouse gas), No air pollutants like
using nuclear power to	carbon monoxide or sulphur dioxide, low fuel costs, jobs created for
generate electricity?	local community, small quantity of waste produced.
What are the disadvantages	Risk of accident and public perception of the risks. The waste is
of using nuclear power to	radioactive and needs storage. Expensive to build and maintain,
generate electricity?	security threat, not nice to look at, wildlife habitats destroyed for
	building, carbon dioxide released in extraction of fuel and more
	traffic in area so noise and air pollution caused.
What are the levels of	High level waste – for example spent fuel rods from the reactor core.
radioactive waste?	Medium level waste – for example cladding around the fuel rods in
	the core of the reactor.
	Low level waste – for example protective clothing.

How is nuclear waste stored	HLW – Long term disposal required such as burving them in tightly
and disposed of?	sealed casks
	MLW – Contained in steel drums and concrete stored in monitored
	areas above the ground
	LLW Compacted and stored containers then buried at sea. Some
	Lew – Compacted and stored containers then buried at sea. Some
What is fission?	The splitting opert of a lorge puelous, that releases operay (and
what is fission?	new trans forming doughter products) for example by the character of
	neutrons, forming daughter products) for example by the absorption of
TT ' 1' /' 1	
How is radioactive decay	Radioactive decay is a natural process (where the unstable nucleus
different from fission?	breaks down), fission is a process that can be controlled by man. Both
	release energy.
What happens to U-235 in	A slow moving neutron collides with the uranium-235 nucleus and is
fission?	absorbed. This makes the nucleus even more unstable and so it splits
	to form 2 daughter nuclei and 2 (or more) fast moving neutrons. Lots
	of energy is released.
What is a controlled chain	The neutrons produced in fission are allowed to go on and cause more
reaction?	fission reactions but this is controlled by using control rods (made
	from boron or cadmium) to absorb neutrons so that only 1 can carry
	on the chain reaction.
What are control rods?	Rods that are made from boron or cadmium and are used to absorb
	neutrons so that, on average, only 1 neutron from each fission reaction
	can carry on the chain reaction. They can be raised or lowered in the
	reactor core.
What are moderator rods?	Rods that are made from graphite and are used to slow the fast moving
	neutrons down so they have more chance of being absorbed by
	uranium atoms for the next fission reactions.
How is thermal energy	Thermal energy released in the fusion reaction in the core is used to
converted into electrical	heat water to steam. The steam is used to turn a turbine (kinetic
energy in a nuclear power	energy) The turbine turns a generator. The generator generates
station?	electrical energy.
Why do nuclear power	When uranium undergoes fission daughter nuclei are produced (for
stations have the	example barium and krypton). The daughter nuclei are radioactive
disadvantage of producing	isotopes and will break down to release radioactive particles over long
nuclear waste?	neriods of time until they have become new stable products. In
nuclear waste:	addition to this, the materials in the core that absorb neutrons become
	radioactive too
What is pusher fusion?	The joining together of two small pueloi to form a larger puelous. For
what is nuclear fusion?	average 2 isotopes of hydrogen (tritium and deuterium) fusing to
	form holium (and a poutron) and releasing approxy
Where does frain hornor	In the Sup and other store
where does fusion nappen	in the Sun and other stars.
	II ah tana antina hish massara and bish da 't
what are the conditions for	fign temperature, high pressure and high density.
fusion to occur?	
Why are the conditions	There is an electrostatic repulsion between the isotopes of hydrogen
required for fusion to occur?	because both nuclei have a positive +1 charge (tritium is 2 neutrons
	and 1 proton and deuterium is 1 neutron and 1 proton). Same charges
	repel and this force needs to be overcome.

Why is it difficult to make a	Because we cannot create the densities and pressures needed to create
fusion reactor that is	and sustain the temperatures required for fusion, we need to put more
economically viable?	energy into the reactor than we get from it.

What can be found in our solar system?	The Sun (our star), 8 planets with natural satellites (moons), dwarf planets, asteroids and comets,
State the names of the planets in our solar system in	Mercury, Venus, Earth, Mars, Jupiter, Saturn,
What is the difference between the geocentric and	The geocentric model has the Earth at the centre of
the heliocentric models of the universe?	the solar system and everything else orbiting around
	it. Whereas the heliocentric has the Sun at the centre
	with everything orbiting around it.
Why did Scientists change their opinion on the	Originally scientists thought the Earth was at the
model of the solar system from the geocentric to the	centre of everything, from observations by the naked
heliocentric?	eye, but by using telescopes to observe and plot the
	incorrect
Describe how Galileo's observations of Jupiter	Using a telescope, Galileo plotted the movements of
provided evidence in favour of the heliocentric	Jupiter's 4 moons around Jupiter thus proving not
model of the solar system in place of the geocentric	everything orbits the Earth.
model.	He also studied the phases of Venus.
How do Scientists observe the solar system and the	Relatively close luminous objects in the solar system
miky way today?	give out visible light that can be observed using talescopes on the Earth or in orbit. Objects further
	away in the Milky way may give out only small
	amounts of visible light and so are better observed
	using other types of telescopes that pick up other
	electromagnetic waves.
What other regions of the electromagnetic spectrum,	Most objects that astronomers observe give out
other than visible light, are used by modern	energy in all parts of the electromagnetic spectrum
telescopes?	Gamma rays X rays ultra violet Infra red
	microwayes and radio wayes are all commonly
	detected as well as visible light.
What methods are used to search for life beyond	Space probes orbit other planets like Mars
earth?	photographing the surface so scientists can decide
	where water might have been. Some space probes fly
	by. The scientists can then use Landers to do soil
	spots. Boyers are also used to move around
	collecting data.
What is the advantage of the Hubble space	As it is situated above the atmosphere so that light
telescope?	from distant objects enters it without being refracted
	or reflected from our atmosphere which creates
	clearer images. There are also not the problems of
How does the use of photography improve	Ingin pollution in orbit.
now does the use of photography improve	Intrages can be shared and/or entarged to
our study of astronomy?	how in more detail and measurements can
	be taken from them.
1	

Topic 7 Astronomy

Why do radio telescopes not need to be in orbit but X-ray telescopes do?	The Earth's atmosphere absorbs some types of electromagnetic radiation including X- rays and so the X-ray telescope would not receive any X-rays on Earth. However, radio waves can be transmitted through the atmosphere and so radio waves can reach radio telescopes on Earth.
What 2 variables affect the gravitational field strength at the surface of a planet?	The mass of the planet and the radius of the planet.
As the mass of planets increases, what happens to the gravity of planets?	g increases.
As the radii of planets increases, what happens to the gravity of planets?	g decreases.
Why does the gravity of an object differ between the surface of Earth and the surface of other places in the Solar System, for example the moon?	Different planets have different masses and radii (they are different sizes). Both variables affect the value of g at their surface.
Why does the weight of an object differ between the surface of Earth and the surface of other places in the Solar System, for example the moon, but the mass of the object does not?	Weight is a force and can be calculated by multiplying the mass by the gravitational field strength ($w = mg$). On Earth $g = 9.81$ N/kg which we round up to 10. As the value of g changes, in different places in the Solar system, the weight of a fixed mass would also change, even though there was the same amount of matter.
Describe the orbit of a planet, like Earth.	An almost circular orbit around a star (like the Sun).
Describe the orbit of a natural satellite, like the moon.	An almost circular orbit around a planet (like the Earth).
Describe the orbit of a comet.	A highly elliptical orbit around a star (like the Sun).
Describe the orbit of an artificial satellite.	An orbit around a planet (like the Earth). Most satellites are in circular orbits but they are at different heights, depending on their uses. Some orbits are tilted and some are elliptical.
Describe what is special about the orbit of a geostationary satellite.	The height of the orbit, means that the speed of the orbit (3070 m/s), keeps the satellite moving relative to Earth at the same point above the surface. These are very useful in broadcasting.
Explain how the radius of an orbit must change if the orbital speed increases.	The orbiting object would move away from the planet it was orbiting until it settles in a higher orbit.

Explain how the radius of an orbit must	The object would fall downward, towards
change if the orbital speed decreases.	the planet, accelerating as it falls until it is
	moving fast enough to orbit at a lower
	height.
Explain how that an object moving in the	Speed is a scalar quantity; it is just a
same circular orbit changes velocity but	measure of how fast the satellite is going.
does not change its speed.	To stay in the same orbital path, the satellite
	will travel at the same speed constantly.
	Velocity is a vector quantity; it tells us
	about how fast the satellite is going and its
	direction too. To move in a circular path.
	direction must keep changing (or the
	satellite would move off at a tangent to the
	circle) therefore, velocity is changing
How are all stars born?	Stage 1: Nebula - a cloud of dust and gases (mainly
	hydrogen) pulled together by gravity.
	Stage 2: Protostar - As the nebula becomes denser,
	the gravitational pull gets stronger and the pressure
	and the neal increases. Stage 3: Main sequence star - The temperature and
	pressure at the core eventually becomes high enough
	that fusion reactions start and the star emits energy
	as electromagnetic radiation. The outward pressure
	from the hot gases balances the inward pull from
How do an all stans (like our Sun) die?	gravity. Stage 1: Red gignt - When most of the hydrogen has
How do small stars (like our sun) die?	fused into helium, the core collapses and the outer
	layers expand. Other fusion reactions form heavier
	elements.
	Stage 2: White dwarf - The red giant throws off a
	shell of gas and what remains will be pulled together by gravity and collapses. No further reactions
	happen inside a white dwarf and so it cools over time
	to become a black dwarf.
How is the evolution of larger stars (with	Large stars become red supergiants after their main
considerably more mass) different?	sequence stage. After the red supergiant stage, the
	supernova)
	If what is left is 4 or more times the mass of our sun,
	gravity pulls the remains together to form a black
	hole.
	If the remains are not that big, gravity still pulls the
Why do we hear the Doppler effect when an aircraft	The aircraft is moving relative to us and so it will
flies over us?	have higher frequency sound waves in front of it
	(because the waves are compressed) and lower
	frequency waves behind (because the waves are
	stretched). As the aircraft passes us and moves away,
How do we know that galaxies further away from us	The faster a galaxy moves the more it is red shifted
are moving faster than galaxies closer to us?	Observations show us that there is more red shift
	from more distant galaxies and so they must be
	moving faster.
What is the Big Bang theory?	The whole universe started out as a tiny point of
	concentrated energy about 13.5 billion years ago.
	expanding.

What is the Steady State theory?	The universe has always existed and has been continuously expanding with new matter being created as it expands.
Both theories believe the universe is expanding, why is this?	When light from far away stars is split using a spectrometer the absorption lines in the spectrum appear to have shift towards the red end of the spectrum. The wavelength is longer and the frequency id lower than we would expect. This is called red shift and can be explained if the source that is emitting the light is moving away from us.
Why do most Scientists believe the Big Bang theory is correct?	Microwave radiation can be observed all over the sky, this is called Cosmic Microwave Background (CMB) radiation. Its presence can be explained by the big bang (and was predicted by it before it was discovered) but not the steady state theory.

Topic 8 Energy – Forces doing work

Describe the energy changes when a motor lifts a load	The motor uses <u>electrical energy</u> and <u>transfers this into</u> <u>thermal, sound and kinetic energy</u> . The <u>kinetic energy is</u>
	transferred into GPE as the load is lifted.
Describe the energy changes when a person uses a bow and arrow	A person uses <u>stored chemical energy</u> and is <u>transferred</u> <u>into kinetic energy</u> as the person pulls the bow back. This is
	transferred into stored elastic energy. When released, the
	stored elastic energy is <u>transferred into kinetic energy and</u>
	<u>GPE</u> of the arrow, until the arrow falls to the floor where it
	is transferred into sound and thermal energy.
Draw an energy transfer atagram for a torch	Battery Lamp Lamp Surroundings
Describe what is happening in this energy transfer	A plant is absorbing light energy from the sun and
diagram	transferring it into chemical energy through the process of
	photosynthesis. Over millions of years the plant has been
Light energy Chemical	transformed into a fossil fuel which is a stored chemical
	energy.
Draw an energy transfer diagram for a nuclear power station	Uranium Thermal energy Boiler Kinetic energy Turbine Generator Generator
Identify the different ways that the energy of a system	1) through work done by forces
can be changed	2) in electrical equipment
	3) in heating
Recall the equation for work done	Work done $(J) = Force (N) x$ Distance moved in direction of
· · · · · · · · · · · · · · · · · · ·	resultant force (m)
What is the unit for work done?	Joules
Explain, using examples, how in all system changes	All energy transfers eventually dissipate heat and sound
energy is dissipated so that it is stored in less useful ways	energy to the surroundings which is wasteful.
	For example, a torch transferring light and heat energy to
	the surroundings
How are all mechanical processes wasteful?	Mechanical processes become wasteful as they <u>cause a rise</u>
	in temperature so dissipating thermal energy to the
	<u>surroundings</u>
what is a definition of power?	The amount of energy transferred every second (Joule per (J_{C}))
Decall the new equation	$Second (J/S))$ $P_{auxon}(W) = an approximation of (I) (time (g))$
What is the unit for power?	<i>Tower</i> (<i>w</i>) = energy transferred (<i>J</i>) / time (<i>S</i>) Watt (<i>W</i>)
What can be measured in joules per second?	Power because 1 $I/s = 1W$
How can you combine work done = force x distance and	Power = (force x distance)
power = work done / time	time
What is the law of conservation of energy?	Energy can never be created or destroyed, only transferred
	from one store (or form) to another.
What is the net change to the total energy in a closed	Zero
system?	
Draw a Sankey diagram to show that 100J of electrical	
energy is transferred into 10J of light energy and ?J of	
thermal (or heat) energy.	Electrical energy 10 J
	Heat energy
	30.1

An objected is lifted upwards, what is the energy transfer that takes place?	Kinetic energy is transferred to gravitational energy.
A moving object crashes into a wall. What types of energy does its kinetic energy get transferred into?	Heat and sound
An object is accelerated by a force, what type of energy does it gain?	Kinetic energy
A moving vehicle applies its brakes, what type of energy does its kinetic energy get transferred into and where is most of this energy stored?	Heat, stored in the brakes
What happens to electrical energy when using a kettle to boil water?	Some is transferred usefully to heat energy in the water and some is wasted heating the surroundings.
When a mechanical process wastefully transfers energy to heat, what happens to the heat?	Heat is dissipated, heating the surroundings.
A stiff bicycle chain wastefully dissipates some energy as heat and sound. Describe how this unwanted energy transfer can be reduced.	Lubricate the chain to reduce friction.
A boiler's hot water tank wastefully dissipates some of its heat energy to its surroundings. Describe how this unwanted energy transfer can be reduced.	Insulate the tank to slow down the rate at which heat is lost to the surroundings.
State the equation for energy efficiency.	efficiency = $\frac{(\text{useful energy transferred by the device})}{(\text{total energy supplied to the device})}$
State the equation for calculating a change in gravitational potential energy.	change in gravitational potential energy (J) = mass (kg) × gravitational field strength (N/kg) × change in vertical height (m) Δ GPE= m x g x Δ h
State the equation for calculating the kinetic energy of an object.	kinetic energy (J) = $\frac{1}{2} \times \text{mass}$ (kg) × speed ² ((m/s) ²)
	$KE = \frac{1}{2} x m x v^2$

Name example forces that cause objects	gravity, magnetism, static electricity
to interact	
<i>at a distance (without contact)</i>	
Name contact forces	Normal contact force, thrust, up thrust, air resistance, friction, water resistance
Why are displacement, velocity,	Because they have size (magnitude) and direction. (scalar quantities only have
acceleration, forces and momentum all	size)
vector quantities and not scalar	
Quantities? Describe a vector diagram to show	
how the Earth and moon interact	Lines point towards each other (opposite directions),
	equal in length (size or magnitude the same)
Describe a vector diagram to show	\longleftrightarrow
how 2 objects with the same charge	Lines point away from each other (opposite
Interact	directions), equal in length (size or magnitude the same)
Describe a vector diagram to show	\uparrow
how a book resting on a table interacts	
with the table	▼ Lines point away from each other in vertical plane (opposite
	directions), equal in length (size or magnitude the same)
show?	The size and direction of the different forces acting on a single object.
Draw a free body force diagram for a	Î
duck sitting on the surface of the water	
	↓ Weight
Draw a free body force diagram for a	Reaction
person walking at constant speed	
	Air resistance ← → Thrust
	Weight
Draw a free body force diagram for a	Reaction
car accelerating	
	Air resistance
	Ļ
What are action and reaction forces?	Weight When 2 bodies interact (for example your foot and a football) they exert
what are denote and reaction forces.	forces on each other that are equal in size and opposite in direction.
What is the extra, left over, force called	Resultant force or net force
in an unbalanced situation?	
What are forces measured in?	Newtons (N).
How do you calculate the resultant	You subtract the total of the forces in one direction from the total force in the
What do resultant forces change?	The speed direction and/or the shape of an object
Describe how to calculate the resultant	1) Draw arrows to scale to represent the forces acting on an object
force using a vector diagram	2) Draw lines with the existing force arrows to make a parallelogram
	3) Draw a line diagonal of the parallelogram, this is the resultant force
	4) Measure the length of the resultant force line and use the scale to
	calculate the size
Describe how to resolve a force acting	1) Draw an arrow to scale to represent the force you are trying to resolve 2) Draw 2 lines at right analog in the direction of the days
down a siope	2) Draw 2 lines at right angles in the direction of the slope 3) Draw 2 more lines to enclose the force into a restangle
	4) Measure the length of the 2 edges of the rectangle (the 2 components of
	the force) use the scale to calculate their sizes
Give examples where forces can cause	Spanner undoing a bolt, scissors cutting, door opening, arm wrestling, a
rotation	crane's counterweight etc – there are so many!
State the equation that allows us to	<i>Moment</i> = <i>Force x Distance normal to the direction of the force</i> .
calculate the turning force (or moment)	Nouton metres (Nm)
forces	Inewion metres (Inm)
IDICES	
State the principle of moments	For equilibrium, the total clockwise turning force is equal to the total

How do levers transmit the rotational effect of forces?	A small effort is applied a long distance from the pivot (or fulcrum) to create a large turning effect. This moment is then balanced by raising the heavy load which is on the opposite side of the fulcrum but close to this pivot point. A small force x long distance normal to the direction of the force = larger force x shorter distance normal to the direction of the force. Levers are force magnifiers
How do gears transmit the rotational effect of forces?	They use a ratio of interlocking teeth between 2 gears to pass on the rotation from 1 gear to another.
How can the effects of friction be reduced when forces are turning objects?	Lubrication
Why would we want to reduce the effects of friction when forces are turning objects?	Friction causes unwanted energy transfer through heating.

Topic 10 Electricity and circuits

Where do you find a proton in an atom?	In the nucleus
Where do you find a neutron in an atom?	In the nucleus
Where do you find an electron in an atom?	In the energy levels/orbits or shells
What charge does an electron have?	Negative (-1)
What mass does an electron have?	Its atomic mass is so small we take it as 0
What charge does a proton have?	Positive (+1)
What mass does a proton have?	An atomic mass of 1
What charge does a neutron have?	It has no charge
What mass does a neutron have?	An atomic mass of 1
What name is given to the negatively charged subatomic particles that cause an electric current?	Electrons
What are the two terminals of an electric cell labelled as?	<i>Positive</i> (+) <i>and negative</i> (-)
What is the circuit symbol for a lamp?	A circle with a cross in it
What is the circuit symbol for a cell?	Two vertical lines, one longer than the other
How can you tell which is the negative terminal of a cell from the circuit symbol?	It is the shorter line.
If you connect some cells together in series, what is formed?	A battery
What is the name of a circuit with one path around it and no branches?	A series circuit
Give a disadvantage of connecting lamps in series.	If one goes out, they all go out/cannot switch one off independently.
What is the name given to a circuit with components in different branches?	A parallel circuit
Which component is used to measure potential difference?	A voltmeter connected in parallel (across the component you are measuring)
Define potential difference (also called voltage)	The energy transferred per unit of charge.
Which equation relates the energy transferred in a circuit to the potential difference.	Energy transferred = charge x potential difference ($E = Q \times V$)

What is another term for potential difference?	Voltage
In a circuit, energy is transferred to a charge. Where is this energy transferred from?	Cell/battery/power supply
State the unit and the symbol for potential difference.	Volt, V
How many volts is one joule per coulomb?	1V
What is the rule for voltage in series?	The voltages across each of the components add up to give the total voltage.
What is the rule for voltage in parallel?	The voltage across each branch is the same.
What component is used to measure current?	Ammeter connected in series
What word describes materials that electricity cannot pass through?	Insulators
What components word describes materials that electricity will pass through?	Conductors
In an electric circuit with a battery, which of these materials will conduct: copper, wood, salty water?	Copper and salty water
Which of these materials are insulators: plastic, metal, air?	Plastic and air
What is the difference between conventional current and the flow of electrons?	Electrons flow from the negative terminal of a cell to the positive terminal, conventional current flows the other way.
What unit is current measured in?	Amps/amperes (symbol A)
What two conditions are needed to give a current in a circuit?	A closed circuit and potential difference
What is the current rule for series circuits?	The current is the same everywhere.
What is the current rule for parallel circuits?	<i>The current is shared between the branches – it is conserved at a junction.</i>
A series circuit has two lamps. When the current through one lamp is 2 A, what is the current through the other lamp?	2A
A parallel circuit has two lamps in parallel. When the current through each lamp is 2 A, what is the current from the battery?	4A
Define electric current	The rate of flow of charge. In a metal, the charged particles that flow are electrons.
State the unit and the symbol for charge.	Coulomb, C
What is the equation relating the total charge that flows to current and time.	Charge = current x time $(Q = I \times t)$
Why are current and potential difference related?	They are directly proportional for a constant resistance. As the potential difference increases the current increases in step with each other. This is because, if you increase the energy of the electrons as you increase the voltage and so the electrons travel faster – there is a greater number of electrons passing the same point in the same amount of time.
State the unit and the symbol for electrical resistance.	01011, 52

Which equation is used to work out electrical resistance? (also called ohms law)	Resistance = potential difference divided by current $(R = V/I)$
What is the symbol for a resistor?	A rectangle
What component can be used to change the resistance in a circuit, for example to change the volume in a loudspeaker?	A variable resistor
What is the symbol for a variable resistor?	A rectangle with an arrow through it
Why does changing the resistance in a circuit change the current?	As resistance increases, current decreases. This is because, resistances opposes the flow of electrons. The greater the resistance the better it is at slowing down the electrons and so less electrons flow per second
Why does current have a heating effect?	As the free electrons flow through the ions of the lattice they collide with those ions. These collisions result in a transfer of energy (kinetic energy of the electron to thermal energy in the wire) and the wire gets hotter
Which variables affect resistance of a wire and how do they affect it?	Length (longer wires = more resistance), thickness (thicker wires = less resistance), material (different materials have different resistances, copper has a lower resistance than nichrome) and temperature (hotter = more resistance)
A circuit contains a resistor. If another resistor is added in series with the first, does the total resistance in the circuit increase, decrease or stay the same?	Increase
A circuit contains a resistor. If another resistor is added in parallel with the first, does the total resistance in the circuit increase, decrease or stay the same?	Decrease
When resistors are connected in series, how can you calculate the total resistance?	Add the resistances together
When the potential difference across a fixed resistor is doubled, what happens to the current?	The current doubles (assuming the temperature is constant)
How does the current vary with voltage for a fixed resistor (or fixed piece of wire)?	They are directly proportional for a constant resistance. As the potential difference increases the current increases in step with each other.
What happens to the resistance of a light-dependent resistor (LDR) when light intensity increases?	It decreases
What happens to the resistance of a thermistor when the temperature increases? (it decreases)	It decreases
Which component could be used to change the current in a circuit when the temperature changes?	A thermistor
Which component could be used to change the current in a circuit when the light intensity changes?	A light-dependent resistor

What is a diode and what does it do in a circuit?	A component that only allows a current to flow one way around a circuit. They can be used to protect other components in a circuit.
How does the current vary with voltage for a diode?	When they are connected the correct way round as current increases voltage increases but it is not directly proportional (not a straight line on the graph).
What happens to the resistance of a filament lamp when the potential difference is increased?	It increases
How does the current vary with voltage for a filament lamp as it warms up?	As a bulb heats up the resistance increases and so, as current increases voltage increases but it is not directly proportional (not a straight line on the graph). The gradient of the graph increases as current increases. This is because as the bulb gets hotter its resistance increases, until it reaches its maximum temperature.
What does the graph of current against potential difference look like for a fixed resistor?	A straight line through the origin/directly proportional relationship
When an electric current passes through a high-resistance wire, what happens to the wire?	It becomes hot
How can resistance in the wires in circuits be reduced?	Cool the wire / use low-resistance material for the wire / make the wire thicker / make the wires as short as possible
Give an example of an appliance that uses the heating effect of a current.	Kettle, iron, toaster etc
Give an example of a disadvantage that can result from overheating by an electric current.	Wasted energy, fire, damage to the appliance/wires etc
If the new connecting wires in a house have a lower resistance than the old ones, what effect will this have on daily electricity use?	It will be less
When electrons move through a lattice of positive ions, what happens to cause electrical resistance?	Collisions
Power is the transfer of what each second?	Energy
Name the unit and give the symbol for power.	Watt, W
Which is more powerful: kettle A, which boils a mug of water in 1 minute, or kettle B, which boils a mug of water in 2 minutes, or do they both have the same power?	Α
Define power.	It is the rate of energy transfer.
Which equation links power to energy transferred, E.	<i>Power</i> = energy transferred divided by time ($P = \frac{E}{t}$)
Which uses more power: A a 12 V 20 W lamp, or B a 240 V 9 W lamp or do they both use the same power?	A
Which equation links power to current and potential difference.	Power = current x potential difference $(P = I \times V)$

Which equation links together both power equations to for an equation for electrical energy transferred?	Energy = Current x potential difference x time (E = I x V x t)
Which equation links power to electrical resistance.	Power = current squared x resistance $(P = I^2 \times R)$
What is the mains voltage in the UK?	230 V
What is the frequency of the a.c. mains voltage in the UK?	50 Hz
What type of energy store does a battery have?	Chemical
At some time after energy is transferred to an electric toothbrush, in what energy store does the energy end up?	In the thermal store of the surroundings
What do the letters d.c. mean?	Direct current
Describe the way the electrons move in d.c.	In one continuous direction. Electrons flow around the circuit in one direction
What do the letters a.c. mean?	Alternating current
Describe the way the electrons move in a.c.	Keep reversing direction. Electrons vibrate passing kinetic energy on
Describe the shape of a d.c trace on the oscilloscope	A straight horizontal line
Describe the shape of a d.c trace on the oscilloscope	A sine wave with peaks and troughs above and below the x axis
Describe the earth wire and state its function	Green and yellow wire, used to prevent electrocution by connecting the metal parts of the appliance to the ground. It has a low resistance and can create a short circuit if needed. Voltage is 0V when the circuit is working correctly
Describe the live wire and state its function	Brown wire, used to connect the appliance to the power supply. In the UK the voltage is 230V across this wire
Describe the neutral wire and state its function	Blue wire, used to complete the circuit to the power supply. The voltage across it is 0V
Explain how a fuse works	The fuse is a deliberate weak link in the circuit made using a special piece of thin wire in a glass tube. If the current is higher, than the fuse is made to allow, the heating effect of the current will melt the wire and the wire will break. This breaks the circuit and stops current flowing to the appliance. Fuses prevent appliances from overheating and causing fires
What is a RCCB?	A residual current circuit breaker. This is a re-settable switch than can be used instead of a fuse. They work quicker than a melting fuse to break the circuit if they detect a dangerous change in the current

topic 11 Static Electricity

What charge does an electron have?	Negative (-1)
What charge does a proton have?	Positive (+1)
How can an insulator be charged?	By rubbing the insulator so that force of friction causes electrons to be transferred.
If a plastic rod is rubbed with a cloth and charges are transferred to the cloth. What charge will the rod have and what charge will the cloth have?	The only charges that can be transferred are electrons. The electrons are transferred to the cloth to make it negative and the rod will be left positively charged.
When two negatively charged objects are brought near to each other what happens?	They repel each other.
When two positively charged objects are brought near to each other what happens?	They repel each other.
When two oppositely charged objects (one positive and one negative) are brought near to each other what happens?	They attract each other.
Explain why hair combed with a plastic comb, might stick up in all directions.	As the hair is combed, electrons are transferred by friction. Each hair has the same charge and so, each hair is repelled from the nearby hairs.
How does earthing a charged object (with a conductor) remove the excess charge and make the object neutral?	If the object is negative, the excess electrons will be able to travel through the conductor to earth. If the object is positive, electrons will be able to travel through the conductor from the earth to the object until the overall charge is zero.
Explain why dry leaves jump and stick to amber when it has been rubbed and held near.	When the amber is rubbed, electrons are transferred to it and it becomes negatively charged. As the charged amber gets near to the dry leaves, it repels the electrons and attracts the protons at the surface of the leaf and so the leaf jumps to the amber and is held to it with an electrostatic force. The leaves are charged by induction.

Explain why pieces of paper jump and stick to plastic comb when it has been rubbed and held near.	When the comb is rubbed, electrons are transferred and it becomes charged. As the charged comb gets near to the pieces of paper, the paper is charged by induction.
Explain why a balloon sticks to wall when it has been rubbed and held near.	When the balloon is rubbed, electrons are transferred and it becomes charged. As the charged balloon gets near to the wall, the surface of the wall is charged by induction.
Explain why water bends and when aa acetate rod has been rubbed and held near.	When the acetate rod is rubbed, electrons are transferred from it and it becomes positively charged. As the charged acetate gets near to the water stream, it attracts the electrons and repels the protons at the surface of the water and so the water bends to the acetate, pulled towards it with an electrostatic force. The water is charged by induction.
When an object is charged by induction, do any charges get transferred?	No. The surface charges just rearrange within the same atoms.
Explain why you might feel a shock after trampolining wearing socks.	As your socked feet rub against the elastic, of the trampoline. you gain a charge. As you climb down and touch the metal frame, or another person, the excess charge flows to earth and you feel the shock as it does.
Explain why lightning occurs.	Charge builds up in the clouds due to friction between particles of ice or water moved by air currents. This excess charge can jump between the clouds and the ground. The rapid heating of the air by this electric current, causes the sound and energy is released, as the air recombines with electrons, in the form of light.

Explain how static electricity is useful in paint spraying.	The nozzle is charged and so, the droplets of paint also gain the same charge as they move through it. Because all the droplets have the same charge, they repel each other and the paint spreads out into a fine mist. The object that is being painted is given the opposite charge to that given to the paint. This means that the paint is attracted to the object and prevents paint from being wasted.
Compare the use of insecticide sprayers with paint sprayers.	Insecticide spraying works in the same way except the crops are not given an opposite charge. The nozzle is charged and so, the droplets of paint also gain the same charge as they move through it. Because all the droplets have the same charge, they repel each other and the insecticide spreads out into a fine mist. The insecticide is attracted to all parts of the crops by induction.
How might an aircraft get charged as it flies?	The air rubs against the aircraft causing a transfer of electrons.
Explain why aircraft need a bonding line when refuelling.	As the fuel flows through the fuel pipe it is charged up. The excess charges could lead to a spark as they try to reach Earth (in a similar way to lightning). This spark could cause an explosion of the fuel. To prevent the charge building up, the fuel tank is connected to earth by a conductor called the bonding line.
When refuelling a car, how is excess charge in the tanks, pipes, hoses, car and person filling up, prevented from building up and causing a spark?	In filling stations the tanks, pipes and hoses are earthed. The car is earthed through its tyres (because they are made of carbon) and the person filling up is earthed when they touch the metal car or the fuel pump.
What is an electric current?	The rate of flow of charge (negative charge or electrons).
What is the difference between a conductor and an insulator?	A conductor has electrons that are free to move (free electrons) and so it allows a flow of electrons – an electric current – through it. An insulator does not have electrons that are free to move (free electrons) and so cannot allow the flow of an electric current through it.

What unit do we measure charge in?	Coulombs (C).
What is an electric field?	The region where any electric charge will experience a force.
Describe the direction and shape of the electric field around a point charge.	The field radiates out in all directions from the point charge. The direction is away, or out of, a positive charge and into, or towards, a negative charge.
Describe the direction and shape of the electric field between parallel plates.	There is a uniform electric field in the direction of positive to negative.
How is the strength of an electric field shown using field lines?	The stronger the electric field, the closer the field lines will be.

How does the idea of electric charge	Charges will be forced to follow the lines
explain static attraction and repulsion?	of force by being pushed or pulled.

Complete topics 12 and 13 triple science

What happens when like and unlike	Like poles repel and unlike pole attract
What is a magnetic field?	The region where magnetic materials (and current carrying wires)
intar is a magnetic field.	experience a force.
Name the 4 materials that can become	Iron, steel, nickel and colbalt.
induced magnets in a magnetic field.	
What is the difference between a	Permanent magnets are always magnetic. They produce their own
permanent magnet and an induced	magnetic field. Induced magnets are only magnetic themselves
magnet?	when they are in the magnetic field of another magnet.
Name a use for permanent magnets	Electric motors. Also generators, loudspeakers, door latches etc.
Describe the shape and direction of the magnetic field around a bar magnet	
Describe the shape and direction of the magnetic field in a uniform magnetic field	NS
How is the strength of a magnetic field related to the magnetic field lines?	The stronger the magnetic field, the closer the field lines are.
Describe how you could use a plotting	1. Place the magnet on some paper
compass to show the shape and direction	2. Draw around it and label N and S
of a magnetic field around a bar magnet.	3. Place the plotting compass at a corner
	4. Draw a dot at the point and tail of the arrow
	5. Remove the compass and draw an arrow 6. Place the compass with its tail at the point of the last
	0. Flace the compass with its fait at the point of the fast arrow you drew
	7. Repeat stages 4 to 7 until you leave the paper or return to
	the magnet
	Start again at any point around the magnet and repeat all around
	the magnet.
Why is a compass needle weighted?	A magnet suspended on a string will tilt relative to the horizontal
How do as the hab aviour of a course	by different amounts in different places.
needle provide evidence that the core of	repelled by the poles of the Farth. The North pole of Farth attracts
the Earth is magnetic?	the North point of the compass needle because it is acting like the
	south pole of a bar magnet.
How can you prove that a current	Hold a compass near and the needle will move or use iron fillings
carrying wire creates a magnetic field?	to show the magnetic field lines.

What method can you use to work out the direction of the magnetic field around a long straight conductor?	The right hand grip rule. Thumb + to – for the electric current and fingers for the field N to S.
	IN DIRECTION OF CUBRENT FLOW RIGHT-HAND RIGHT-HAND RULE
What are the two variables that affect the	Size of the current (larger current will create stronger magnetic
strength of the magnetic field in a long	field) and distance from the wire (further away from the conductor
straight conductor?	the magnetic field will be weaker)
What is a solenoid?	A coil of wire
In a solenoid, where is the magnetic field	In the centre because the field is uniform there, the magnetic field
strongest and why?	from each individual coil adds up (Around the outside some of
stiongest and wry.	the magnetic fields cancel out and so the overall field is weaker)
Explain why a current carrying	The magnetic field from the current interacts with the
conductor placed near a magnet will	magnetic field from the magnet and forces the conductor
move	magnetic field from the magnet and forces the conductor.
What is true about the force on the	They are equal in size (magnitude) and apposite in direction
wire and the force on the magnet for	They are equal in size (magnitude) and opposite in uncerton.
the current carrying conductor	
between the poles of a magnet?	
What causes magnetic forces?	The interaction between magnetic fields.
When is the force on a current	When the direction of the current is at right angles to the
carrying wire, in a magnetic field,	direction of the magnetic field.
strongest?	
What is Fleming's left hand rule?	
_	First finger F
	Field magnetic field
	se C ond finger
	Current
	thuMb Current
	WOUGH
Which factors offect the magnetic	Size of the current (larger current - bigger force) strength of
force?	the magnetic field (greater magnetic flux density – higger
	force) and length of wire in the magnetic field (longer wire
	more turns on coil = bigger force).
Which equation links the factors	Force (N) = Magnetic flux density (T) x current (A) x length of
affecting the magnetic force?	wire (m). F= B x l x l
1 N/Am is equivalent to what?	1 Tesla (1T)
Why does the coil in a simple d.c.	The current flows one way down one side of the coil and the
motor start to turn?	opposite way down the other side of the coil, each side creating
	a magnetic field. The magnetic field from each side of the coil,
	interacts with the magnetic field from the permanent magnets
	forcing one side of the coil upwards and the other side of the
	coil downwards.
How does the split ring commutator	It switches the current to keep it flowing in the correct
keep the coil spinning in a simple d.c.	direction so that the forces on the coil keep it spinning in one
motor?	direction.
How can an electric surrout be induced?	By moving the either the wire or the magnetic field relative to
110w can an electric current be induced?	one another or by changing the magnetic field.
How can a larger current be induced?	By moving the magnet or wire faster, by using a higger coil of
	wire (to have more length in the magnetic field) or by using a
	stronger magnet.
	6 ····6 ····

Explain how an electric current can be produced on a small scale in the laboratory	A simple generator consists of a coil of wire, with the ends connected to slip rings, that is rotated inside a magnetic field. As the coil turns a current is induced. Carbon brushes are used to connect the slip rings to an external circuit.
Explain how an electric current can be produced by an alternator in a car	A rotating electromagnet is surrounded by coils. The electromagnet is turned by the car's engine and this induces a current in the coil. The coil is connected to an external circuit. The induced current is a.c.
Explain how an electric current can be produced on a large scale (for example, at a power station)	A large rotating electromagnet that is surrounded by coils. The electromagnet is turned by the steam driven turbines and this induces a current in the coil. The coil is connected to an external circuit. The induced current is a.c.
What is the difference between direct current (DC) and alternating current (AC)?	d.c. is always in one direction. For example the current from a battery or solar cell. a.c. changes polarity because it is constantly changing direction. For example in the generator at a power station.
Explain how electromagnetic induction is used in dynamos	A coil of wire is turned (for example by being connected to the moving wheel of a bike) inside a magnetic field, inducing a current. The coil is connected to a commutator which switches the connections every half turn. This causes the induced current in the external circuit to be in one direction (d.c.)
What type of current is generated with a dynamo?	Direct current (d.c.)
What type of current is generated with an alternator?	Alternating current (a.c.)
What is the difference between an alternator and a dynamo in design?	An alternator has slip rings and a dynamo has a commutator (or split ring commutator)
Explain how a loudspeaker works	They convert variations in electrical current into sound waves using a coil in a magnetic field. As the varying current flows through the coil, the force exerted on the coil causes it to move back and forth. The coil is connected to a diaphragm which also moves and produced sound waves.
Explain how a microphone works	They convert pressure variations in sound waves into variations in electrical current. As the sound waves cause the diaphragm to vibrate back and forth, it moves a coil of wire backwards and forwards within a magnetic field. This induces a varying electrical signal.
What does a transformer do?	A transformer changes the voltage of an a.c. supply.
How does a transformer work?	An alternating current flows into the primary coil. This makes a magnetic field in the core. The magnetic field changes direction many times a second. The changing magnetic field induces a current in the secondary coil. The induced current is alternating too.
Why can't transformers work on d.c. supplies?	A direct current flowing into the primary coil would make a constant magnetic field in the coil. This would cause a spike of current in the secondary coil, when it is first switched on because it would be like pushing the magnet into the secondary coil. There would also be a spike in current (in the opposite direction) when you turn it off (because it would like pulling the magnet out of the coil) but once on, it would be like the magnet is stationary in the secondary coil and so there would be no movement of the coil or magnetic field and no current would be induced in the secondary coil.

What is a step up transformer?	To increase the voltage you need less coils of wire on the primary
	up transformer, it will increase the voltage and to maintain the
	same power, decrease the current.
What is a step down transformer?	To decrease the voltage you need less coils of wire on the
1	secondary coil of the iron core and more on the primary coil. This
	is a step down transformer, it will decrease the voltage and to
	maintain the same power, increase the current.
How does the power compare in the	It is the same.
primary and secondary coils of a	
transformer?	
why is electrical energy transmitted at high voltages?	It improves efficiency by reducing heat loss in the transmission
lingh voltages?	output
	output.
Where would step up and step down	Step up transformers are used at the power station whereas step
transformers be used in the national grid?	down transformers are used before electricity enters factories and
	again before it enters homes, offices and shops.
What is power and what units is it	It is the rate of transferring energy. It is measured in Watts (W).
measured in?	IW = I J/s.
what are the standard units for current?	amperes (A).
What are the standard units for voltage	volts (V).
or potential difference?	
What are the hazards of transmitting	High voltages could cause electrocution.
electricity?	
what is efficiency?	A measure of now much of the energy is transferred into a useful
State what each part of the turns ratio	N - Number of turns on the primary coil of the transformer
equation stands for and any units	$n_{\rm p} = n_{\rm table f}$ of tarms on the primary con of the transformer (no unit)
involved	$N_s = Number of turns on the secondary coil of the transformer$
	(no unit)
	V _p = Voltage (or potential difference) across the primary coil
	(in volts)
	$V_s = Voltage$ (or potential difference) across the secondary coil
	(in volts)
state the 3 different power equations and	Power (W) = energy transferred (J) / time (s) Power (W) = current (A) x voltage (V)
	Power (W) = current squared (A) x resistance (O)
	10001(0) = 00100000000000000000000000000000000

Topic 14 Particle Model

Describe solids in terms of the movement	Particles vibrate but cannot move, keep their
and arrangement of particles	shape, cannot be compressed.
Describe liquids in terms of the movement	Particles moving faster, can move around each
and arrangement of particles	other. Take shape of container, will flow, cannot be
	compressed.
Describe gases in terms of the movement	Particles far apart, move freely, expand to fill
and arrangement of particles	container, can compress.
Why is changing state a physical change?	No new substance is made and it will recover its
(2 reasons)	original properties if the change is reversed.
what pattern, in the force of attraction	Forces of attraction get weaker.
solids to liquids to gases?	
What pattern in density is usually seen as	Density increases
vou go from solids to liquids to gases?	Density mercuses.
Explain why a solid is denser than a gas.	In solids, the particles are closer together and so
r · · · · · · · · · · · · · · · · · · ·	there is more mass per volume.
What is the equation linking density, mass	density = mass \div volume (p=m/V)
and volume?	
What is the standard unit for density?	Kg/m ³
What equipment could you use to find the	Displacement can or a measuring cylinder if the
volume of an irregular shaped object	object is small enough.
	(If the object floats it will need to be weighted
	down with an object of known volume).
If a 5g solid copper is melted, what will the mass of liquid copper be? Why?	5g. Because mass is conserved.
What is the difference between temperature	Temperature is a measure of how hot something is
& heat?	whereas, heat is a measure of the thermal energy
	contained in an object.
In which changes of state is thermal energy absorbed?	Melting, evaporating and subliming.
In which changes of state is thermal energy	Freezing and condensing.
emitted?	
	A - freezing,
₹ Solid	B - melting,
	C - condensing,
leub 8	D - evaporating
Energy (J) duckingsciencebombs.wordpress.com	
Label A-D	
Describe why adding energy isn't leading	The temperature stays the same during a change of
to a temperature increase in the plateaus on	state, even though heat energy is still being
a temperature/time graph.	absorbed. The extra energy is making the particles
	break away
	orcak away.
How is energy stored by the particles in	As kinetic energy of the particles.

How is the energy stored by a substance	The more energy stored by the particles, the faster	
related to the temperature of that	they are moving and the higher the temperature.	
substance?		
Define specific heat capacity	The specific heat capacity of a substance is the	
	energy needed to increase the temperature of 1 kg	
	of the substance by 1 °C.	
Which equation, on your formula sheet,	change in thermal energy = mass \times specific heat	
includes the specific heat capacity?	capacity × change in temperature $\Delta Q = m \times c \times \Delta \theta$	
Which unit is specific heat capacity	J/kg ° C	
measured in?		
Define specific latent heat	The specific latent heat of a substance is the energy	
-	needed to melt or boil 1 kg of the substance.	
Why is there a specific latent heat of	It takes more energy to evaporate 1kg of a	
melting and a specific latent heat of	substance than to melt 1kg of the same substance. It	
evaporation?	takes the same amount of energy to freeze-melt or	
•	evaporate/condense.	
Which equation, on your formula sheet,	Thermal energy for a change of state = mass \times	
includes the specific latent heat?	specific latent heat. $Q = m \times L$	
Which unit is specific latent heat measured	J/kg	
in?		
What piece of equipment can be used in	Joulemeter.	
place of a voltmeter, ammeter and		
stopwatch to measure the energy		
transferred by an electric immersion		
heater?		
When experimentally measuring the	Heating the surroundings and the cup that holds the	
specific heat capacity of a liquid, where	liquid. Not all the energy transferred by the heater	
does the main error come from?	goes into the liquid. This can be reduced by	
	insulating the cup well and using a lid.	
Explain how using bubble wrap would	Bubble wrap has a low thermal conductivity. It	
reduce unwanted energy transfer.	reduces the heat loss by conduction. The material	
	also reduces air circulating, reducing heat loss by	
	convection.	
Describe the term absolute zero	Absolute zero is the point at which the gas particles	
	stop moving. The particles will exert no pressure at	
	this temperature.	
What is absolute zero in °C	-273 °C.	
Convert 25 °C to kelvin	25 + 273 = 298 K	
Convert -93 k to degrees Celsius	-93 - 273 = -366 °C	
What is the relationship between kinetic	As a gas is heated up and temperature increases, the	
energy of the particles in a gas and its	particles gain more energy. With more kinetic	
temperature in Kelvin?	energy the particles move faster. Temperature (in	
	K) and kinetic energy are directly proportional.	

How do particles cause gas pressure?	Gas pressure is caused by the collisions between the particles and the container it is in. This means that there is a net force exerted at right angles to the area.
Why would heating a gas in a container increase pressure, with a fixed volume? (aka pressure law)	When the temperature is increased, the gas particles move faster because they have more kinetic energy. The collisions become harder and more frequent and so there is more force on the same area.
Name the 3 factors that affect gas pressure in a closed container	The number of gas molecules, the volume of the container and the temperature.
What is the relationship between volume of a gas and its pressure, for a fixed mass and temperature of gas? (aka Boyles law)	As the volume of a gas decreases, the pressure would increase. Volume and pressure are inversely proportional to each other.
Use the particle model to explain how decreasing the volume of a container of gas would affect the pressure.	Because there has been a decrease in volume the particles will collide more frequently with the walls of the container. More collisions mean more force on the same area, so the pressure will increase.
What does each part of this equation mean? $p_1V_1 = p_2V_2$	P_1 is the initial pressure V_1 is the initial volume P_2 is the final pressure V_2 is the final volume
What must the units for volume and pressure be when using the Boyles law equation?	It doesn't matter but the same unit must be used on both sides of the equation.
Why are the gases that are used in medicine stored in special bottles?	To save storage space. By compressing the gas more gas can be squashed into a smaller volume. This is done by increasing the pressure above atmospheric pressure of 100 000 Pa.
Define work done	Work is the transfer of energy by a force.
How does using a bicycle pump increase the temperature of the gas inside?	The bicycle pump forces the gas into the tyre, this transfers energy into it (work). The energy makes the gas particles move faster and this can be detected as an increase in temperature.

topic 15 Forces and matter

What is the minimum number of	Two
forces that need to be applied to an	
object to stretch, bend or compress	
Il? What is the difference between	A distortion is a change of shape when there is a force applied. When
elastic and inelastic distortion?	the object is elastic, t it returns to its original shape when the force is removed but an inelastic object does not return to its original shape.
Describe the relationship between	The force and length have a linear relationship. The graph would be
the length of a spring and the force	a straight line.
applied to it before it reaches its	0
elastic limit	
Describe the relationship between	The force and extension have a linear relationship. They are directly
the extension of a spring and the	proportional to each other. This means the graph will not only be a
force applied to it before it reaches	straight line, it will pass through $(0,0)$ because as the force doubles,
its elastic limit	the extension will double as well.
Describe the relationship between	The force and extension would have a non-linear relationship. The
the extension of a spring and the	graph would be a curved line.
Jorce applied to li ajter il reaches ils	
How would you measure the	Measure the length with no force applied Measure the length with
extension of a spring?	the force applied Find extension from stretched length – original
exclusion of a spring.	length.
How would you calculate the spring	Spring constant $(N/m) =$ Force $(N) /$ extension (m)
constant if you know the force and	
the extension?	
How would you calculate the spring	From the gradient of the graph (extension along the x axis and force
constant from a graph of extension	on the y axis).
against force?	
In what circumstances can you use	Only for elastic materials before the elastic limit, where the
the equation $F = k \times x$ when	relationship between force and extension is linear.
stretching materials?	
Do stiffer springs have a higher or	Higher because you would need to apply more force to get the same
lower spring constant?	extension.
Which equation can be used to	Energy transferred = $\frac{1}{2}$ x spring constant x extension ²
calculate the amount of energy	
transferred in stretching a spring?	
Which equation can be used to	The same equation (Energy transferred = $\frac{1}{2}$ x spring constant x
calculate the work done when a	extension ²) because work done and energy transferred are the same
spring is stretched?	thing.
What is the magnitude of	100 000 Pa
atmospheric pressure at sea level?	
Explain why the atmosphere exerts	The atmosphere is made up from gas particles. These particles
a pressure on you	collide with you, causing a force at right angles to your surface
	area – a pressure.
Explain why atmospheric pressure	As you go higher, you have less air above you and so atmospheric
varies on you at different heights	pressure decreases. The deeper you are in a fluid, the more weight
above the earth's surface	of fluid there is above you. When you are at sea level, you are at the
	bottom of the atmosphere and atmospheric pressure is at its
	maximum.
Explain what happens to the air	It increases because as you descend, there is more atmosphere
pressure if you go down a deep	above you.
mine.	

when you note out your name in air, why don't you feel the force exerted down onto it by atmospheric pressure?	There is also the same force (same atmospheric pressure) acting upwards on the other side of your hand. The forces are balanced and there is no resultant force.
Explain why a sealed balloon would inflate more as it moves higher in the atmosphere (assume temperature does not change).	When the balloon was filled and sealed, the pressure inside and outside is balanced. As the balloon rises, the atmospheric pressure will decrease outside the balloon but the pressure inside the balloon would remain the same. Therefore, the pressure inside the balloon will push it outwards.
Explain what causes the pressure on a deep-sea diver	The ocean is made up from liquid particles. These particles collide with you, causing a force at right angles to your surface area – a pressure. It is important to remember that the atmosphere is also exerting its maximum pressure from above the ocean too.
How can pressure be calculated?	Pressure (Pascals, Pa) = Force normal to the surface (newtons, N)/ area of the surface (metres squared, m^2)
Footballers wear boots with studs on the bottom. Explain why football boots help the player grip the pitch.	The area of the studs is much smaller than the area of the boots, so the pressure under the studs is greater (same force at normal because it is the weight of the player). The greater pressure causes the player to sink into the muddy pitch and provides better grip.
Which word can be used to describe both liquids and gases?	Fluid
In which direction do the forces acts in fluids?	Forces acts normal to the surface (at 90° or at right angles) in all directions.
<i>Explain how pressure varies with depth in a liquid</i>	The deeper you go, the greater the pressure.
Explain how pressure varies with density of a liquid	The greater the density of the liquid, the greater the pressure. This is because denser liquids have more particles packed into the same volume and so more force (weight of the particles) on the same area.
Which equation links the pressure due to a column of liquid to the depth and density of that liquid?	Pressure (Pascal, Pa) = Height of the column (metres, m) x Density of the liquid (kilogram per cubic metre, kg/m ³) x gravitational field strength (newtons per kilogram, N/kg)
is the effect on the pressure on you?	The pressure would double that at the surface. This is because water is over 800 times more dense than air at sea level and the total pressure on you will be from both the water and the air above the water.
Which force is due to the difference between the pressure above and below an object in a fluid?	The pressure would double that at the surface. This is because water is over 800 times more dense than air at sea level and the total pressure on you will be from both the water and the air above the water. Upthrust (measured in newtons, N)
Which force is due to the difference between the pressure above and below an object in a fluid? What does the weight of fluid displaced by an object equal?	The pressure would double that at the surface. This is because water is over 800 times more dense than air at sea level and the total pressure on you will be from both the water and the air above the water. Upthrust (measured in newtons, N)
If you dive form underwater, what is the effect on the pressure on you? Which force is due to the difference between the pressure above and below an object in a fluid? What does the weight of fluid displaced by an object equal? Describe the forces acting on a floating object	The pressure would double that at the surface. This is because water is over 800 times more dense than air at sea level and the total pressure on you will be from both the water and the air above the water. Upthrust (measured in newtons, N) Upthrust (measured in newtons, N) The weight of the object is balanced by the upthrust.
If you dive form underwater, what is the effect on the pressure on you? Which force is due to the difference between the pressure above and below an object in a fluid? What does the weight of fluid displaced by an object equal? Describe the forces acting on a floating object Why do heavier objects float deeper into a liquid than lighter objects?	The pressure would double that at the surface. This is because water is over 800 times more dense than air at sea level and the total pressure on you will be from both the water and the air above the water. Upthrust (measured in newtons, N) Upthrust (measured in newtons, N) The weight of the object is balanced by the upthrust. They need a greater pressure beneath them to balance their weight and so need to sink to a lower depth (where the pressure is greater) before the forces of weight and upthrust balance.
If you dive form underwater, what is the effect on the pressure on you? Which force is due to the difference between the pressure above and below an object in a fluid? What does the weight of fluid displaced by an object equal? Describe the forces acting on a floating object Why do heavier objects float deeper into a liquid than lighter objects? Explain why some objects do not float.	The pressure would double that at the surface. This is because water is over 800 times more dense than air at sea level and the total pressure on you will be from both the water and the air above the water. Upthrust (measured in newtons, N) Upthrust (measured in newtons, N) The weight of the object is balanced by the upthrust. They need a greater pressure beneath them to balance their weight and so need to sink to a lower depth (where the pressure is greater) before the forces of weight and upthrust balance. The upthrust is less than the weight of the object and so there is a resultant force downwards.

Physics GCSE resources on-line

I have tried to make my resources available online. Quizlet – <u>www.quizlet.com</u> search Revisionwithmissmac YouTube – <u>www.youtube.com</u> search Revision with Miss Mac To help you access these you can use these **QR codes**:

Revision videos on YouTube (now with P1, P2, top 10 tips and other things playlists):

Quizlet for interactive revision of Keywords, Core knowledge and physics some Maths for sets too:

Google drive:

Core questions

Keywords

Past papers

Where to find me for 1-1 help:

Wednesday and Thursday lunchtimes in room 46

How to contact me if you have a query when I am not in school:

rmacpherson@aylshamhigh.norfolk.sch.uk

Checklists

Other useful things

GCSE Physics (9-1)

Assessment will be 2 (1hr 45min) exams at the end of year 11 both worth 50% each.

Physics exams will be:

A mixture of different question styles, including multiple-choice questions, short answer questions, calculations and extended open-response questions.

55% on a selection of core knowledge and applications of core knowledge via multiple choice, long answer and extended writing questions (6*). 30% mathematical applications. 15% on practical skills.

Paper 1 (*Paper code: 1PH0/1F and 1PH0/1H)

Written examination: 1 hour and 45 minutes

50% of the qualification

100 marks

Content overview

- Topic 1 Key concepts of physics
- Topic 2 Motion and forces
- Topic 3 Conservation of energy
- Topic 4 Waves
- Topic 5 Light and the electromagnetic spectrum
- Topic 6 Radioactivity
- Topic 7 Astronomy

Assessment overview

A mixture of different question styles, including multiple-choice questions, short answer questions, calculations and extended open-response questions.

Paper 2 (Paper code: 1PH0/2F and 1PH0/2H)

Written examination: 1 hour and 45 minutes

50% of the qualification

100 marks

Content overview

- Topic 1 Key concepts of physics
- Topic 8 Energy Forces doing work
- Topic 9 Forces and their effects
- Topic 10 Electricity and circuits
- Topic 11 Static electricity
- Topic 12 Magnetism and the motor effect
- Topic 13 Electromagnetic induction
- Topic 14 Particle model
- Topic 15 Forces and matter

Assessment overview

A mixture of different question styles, including multiple-choice questions, short answer questions, calculations and extended open-response questions.

Students should be able to select and apply the following equations

Students may be asked to select and apply these equations in the exam papers. These equations will be given in a formulae sheet at the end of the exam papers.

Equations required for higher tier only are shown in bold text. Higher tier only equations will not be given in the formulae sheet for the foundation tier papers.

Specification reference	Equation
2.9	$(final velocity)^2 - (initial velocity)^2 = 2 \times acceleration \times distance$
	$v^2 - u^2 = 2 \times a \times x$
2.26	force = change in momentum ÷ time
	$(mv - mu)$ $F = \underline{\qquad \qquad }$ t
10.27	energy transferred = current × potential difference × time $E = I \times V \times t$
12.13	force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density × current × length $F = B \times I \times l$
13.7P	potential difference across primary coil number of turns in primary coil
	$ \overline{\begin{array}{c} \hline \\ potential \ difference \ across \ secondary \ coil \ \\ \hline \\$
13.10	For transformers with 100% efficiency, potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil $V_P \times I_P = V_S \times I_S$
14.8	change in thermal energy = mass × specific heat capacity × change in temperature $\Delta Q = m \times c \times \Delta \theta$

14.9	thermal energy for a change of state = mass × specific latent heat
	$Q = m \times L$
14.19P	$P_1 \times V_1 = P_2 \times V_2$
	to calculate pressure or volume for gases of fixed mass at constant temperature
15.4	energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$
	$E = \frac{1}{2} \times k \times x^2$
Specification reference	Equation
15.14P	pressure due to a column of liquid = height of column × density of liquid × gravitational field strength
	$P = h \times \rho \times g$

Core practical		Description
2.19	<i>Investigate the relationship between force, mass and acceleration by varying the masses added to trolleys</i>	Different masses must be used to investigate the effect of varying masses on the acceleration of a trolley down a ramp. Appropriate methods must be used to measure the force and time taken for the trolley to travel down the ramp, and data analysis must include calculating the acceleration.
4.17	Investigate the suitability of equipment to measure the speed, frequency and wavelength of a wave in a solid and a fluid	This investigation involves looking at the characteristics of waves and using the equation speed = frequency x wavelength It is expected that students will have looked at waves in a liquid using a ripple tank, and waves in a solid using a metal rod and a method of measuring the frequency. Suitability of apparatus to take these measurements must also be considered.
5.9	<i>Investigate refraction in rectangular glass blocks in terms of the interaction of electromagnetic waves with matter</i>	A light source with grating must be used to produce a beam of light, which must then be used to investigate the effect of refraction using a glass block. An appreciation of the interaction of the light ray with the glass block and the effect of changing medium on the light ray (moving towards and away from the normal) must be included.
5.19P	<i>Investigate how the nature of a surface affects the amount of thermal energy radiated or absorbed</i>	A minimum of four different beakers or test tubes must be covered in different materials (different colours, or shiny/dull surfaces). The same volume of hot water must then be poured into each container, and covered with a lid. Using a thermometer the temperature can be monitored and recorded at fixed times using a stopwatch.
10.17	Construct electrical circuits to: a investigate the relationship between potential difference, current and resistance for a resistor and a filament lamp b test series and parallel circuits using resistors and filament lamps	This investigation involves constructing a circuit to investigate potential difference, current and resistance for a resistor and a filament lamp. The behaviour of parallel and series circuits must also be included, and this must be done using filament lamps. A series circuit should be set up initially with a resistor, ammeter and voltmeter. The current must be recorded at different voltages. This must then be repeated using a filament lamp instead of a resistor. To investigate series and parallel circuits, a parallel circuit must be set up with ammeters, voltmeters, and filament lamps. Readings from this circuit must then be compared with series circuits used initially. Analysis must include use of the equation voltage = current x resistance

14.3	<i>Investigate the densities of solid and liquids</i>	The density of a solid object must be determined by measuring the mass and volume of the object, and then using the equation density = mass /volume The volume must be determined by putting the object into water, and measuring the volume of water that has been displaced. The density of a liquid can be calculated by weighing the liquid using a balance, and determining the volume.
14.11	<i>Investigate the properties of water by determining the specific heat capacity of water and obtaining a temperature-time graph for melting ice</i>	The temperature of crushed ice must be recorded using a thermometer. This must then be melted using a Bunsen burner and beaker of water as a water bath. The temperature must be monitored as the ice melts. To determine specific heat capacity of water, the temperature of water using a thermometer must be monitored while heating it using a heat supply connected to a joulemeter. This must then be used to calculate the specific heat capacity.
15.6	<i>Investigate the extension and work done when applying forces to a spring</i>	The stretching of a spring must be investigated by measuring the length of a spring with no weights, followed by adding varying masses and measuring the new length. This must include calculating the work done and an appreciation of the forces involved.