Name

Class

Aylsham High School Science

Year 7 C1: Atoms and the periodic table

Contents:

Core Knowledge

Concept 1: Models of Atoms

Concept 2: Atoms, elements, compounds and mixtures

Concept 3: Chemical symbols

Concept 4: Chemical and physical change

Concept 5: Physical and chemical properties of elements

Concept 6 : The periodic table

5 quick questions templates

<u>**C</u>**ore Knowledge</u>

What is an atom?	The smallest part of an element that can exist		
Describe Dalton's model of the atom.	Atoms as solid spheres that cannot be		
	divided into smaller parts		
What is an element?	A substance made of one type of atom		
	e.g oxygen=O ₂ , Iron= Fe		
What is a molecule?	A particle made of two or more atoms		
	joined together e.g. Oxygen =O ₂ ,		
	Water =H ₂ O		
What is a diatomic molecule?	A molecule that consists of two		
	atoms, often the same. E.g. O_2 , Cl_2		
What is a chemical symbol?	A one or two universal letter code of each element		
Where are chemical symbols of elements found?	In the periodic table		
What is a compound?	A substance made of more than one type		
	of atom chemically joined together. E.g.		
	Water = H_2O , Carbon dioxide = CO_2		
What is a chemical formula?	A formula that shows the number and type of		
	atoms present in a molecule.		
What do the compound endings:	 ide – a compound of only the named 		
1) ide	substances		
2) ate	ate – a compound of the named substances		
mean?	and oxygen		
What is a physical change?	Changes of state as no new substances are made.		
What is a chemical change (Chemical reaction)?	When atoms rearrange to make new substances		
Where do we find metals in the period table?	On the left		
Where do we find non-metals on the periodic	On the right		
Who designed the modern periodic table?	Mendeleev		
What are the groups in the periodic table?	Columns		
What are the rows called in the periodic table?	Periods		
What are the physical properties of most metals?	Good conductors of electricity, good conductors of		
	heat, shiny, high density (heavy for its size),		
	malleable (can be hammered), sonorous (makes a		
	ringing sound when hit), ductile (can be pulled		
	into wires), high melting points (except mercury),		
	hard		
What are the physical properties of non-metals?	Poor conductors of electricity, poor conductors of		
	heat, dull, low density (light for its size), brittle (
	breaks easily), non-sonorous (no ringing sound		
	when hit), low melting points		

Concept 1: Models of Atoms
We are going to look at what atoms are and how we use a simple model to describe them
John Dalton published his ideas about atoms in 1803. He thought that all matter was made of tiny particles called atoms, which he imagined as tiny solid balls.
$ \begin{array}{c} $
with different elements. From his experiments he found that:
differentseemed to consist of particles He describedas tiny, hard balls.
He thought that each chemical had its own kind of .
 Although he did not know what their structure was, he knew he had found out something important.
Element, atom, John Dalton, elements, atoms
What is an atom?
Draw a picture of Dalton's model of the atom.
Where do we find atoms?

Concept 2: Atoms, elements, compounds and mixtures

We are going to explore the differences between elements, compounds and mixtures and use our model of an atom to help us explain these

A substance made from only one type of atom is called an element.

Elements are listed on the periodic table.

Atoms can be drawn as circles. But all the atoms of an element need to look exactly the same e.g.

Atoms can form strong bonds with each other, making molecules.

A molecule is a particle made of two or more atoms joined together

More than one type of element joined together makes a compound.

When drawing a diagram of molecules made from the atoms of more than one element, different sizes and colours can show the different elements. E.g.

A mixture consists of two or more different substances, not chemically joined together e.g Air

How many different types of element are there?

Give some examples of elements?

What do scientists make if different elements are joined together?

Draw a particle diagram to represent two different elements joined together? E.g. Salt NaCl

What do scientists make if different elements are not joined together?

|--|

1. Would you describe iron as an element, mixture or compound?

- 2. Draw a diagram showing what the particles might look like in pure iron. Explain your diagram.
- 3. Would you describe sulfur as an element, mixture or compound?
- 4. Draw a diagram showing what the particles might look like in pure sulfur. Explain your diagram

Now watch the teacher:

- 5. When the teacher mixed the 2 together how would you describe them?
- 6. Draw a diagram showing what the particles might look like when iron and sulfur are mixed. Explain your diagram

Watch what happens when you bring a magnet near:

7. How and why could you separate the mixture of iron and sulfur?

Watch what happens when you heat the substances:

- 8. What did you observe when the mixture of iron and sulfur was heated.
- 9. What has been made? How could you describe it?
- 10. Draw a diagram showing what the particles might look like when iron and sulfur have reacted with one another. Explain your diagram

Let's compare and contrast elements, compounds and mixtures:

	Compound	Mixture
Does the substance have a fixed composition?		
Give some examples		
Joined together?		
Draw a diagram to show how the particles could be arranged		
Properties compared to the particles it made from		
Can it be separate?		

B= Compound C= Mixture of elements ch circle represents an ato	E= Mixtu E= Mixtu	re of elements and compou resents a different kind of
em. If two atoms are touc C. O. O. C. O. C. O. O. C. O. C. O. O. O. O. C. O. O. O. O. C. O. O. O. O. C. O. O. O. O. O. C. O. O. O. O. O. C. O.	hing then they are bonded tog	ether.
٦)	2)	3)
8 98 %		****
4)		6)
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		8080 8080
7)	8)	9)
\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	96 %986 % % % %	
10)	11)	12)
≈ 3-6 ∞ 3-6 ∞ 3-6 ∞		

Concept 3: Chemical symbols

Key Idea

Each element is represented by its own chemical symbol. A chemical symbol:

- consists of one or two letters
- always starts with a capital letter, with any other letter in lower case

For example, the element mercury is shown as Hg. Do not show it as HG, hg or hG.

Symbols and formulae

1. Which is the correct symbol for Hydrogen?

Н	h	Ну	hy

2. Which is the correct symbol for Potassium?

Р	Ро	К	k

3. What is the correct symbol for Magnesium?

mg	М	mG	Mg

4. What is the correct symbol for Chlorine?

C	cl	CL	Cl

5. Which is the correct symbol for Carbon?

C	Са	С	СА

6. Which is the correct symbol for Iron?

I	lr	Fe	FE

7. What is the correct symbol for Copper?

CU	Cu	cU	cu

8. What is the correct symbol for Oxygen?

0	OX	OX	Ox

The chemical formula of a compound shows how many of each type of atom join together to make the units which make up the compound.

The first Three rules for working out formula

- 1. Every time there is a new capital letter there is a new element to count. For example:
 - CO = 1 x Carbon and 1 x Oxygen.
 - Whereas, Co = 1 x Cobalt
- 2. If there is no number present (big or small) there is actually an invisible number 1. For example:
 - CuSO₄ would probably be more clear if it were written like this 1Cu₁S₁O₄ and contains 1 x Copper, 1 x Sulphur and 4 x Oxygen
- 3. If a big number is before a substance everything needs to be multiplied by that number. For example:
 - **4**H₂O = **4** x 2 = 8 Hydrogen and **4** x 1 = 4 Oxygen

Look carefully at the list of chemicals below,

Br₂, He, H₂, H₂O, O₂, Cl₂, I₂, NH₃, N₂, CO₂, HF, F₂, CH₄, HBr, C₂H₄, Ne,

From the list write down the formula of any elements

From the list write down the formula of any substances that contain 2 atoms

From the list write down the formula of any compounds that contain 3 atoms

From the list write down the formula of any compounds that contain 4 atoms

From the list write down the formula of any compounds that contain 5 atoms

From the list write down the formula of any compounds that contain 6 atoms

Are all the substances with 2 atoms compounds?

Some non-metal elements exist as simple molecules with two atoms joined together. We say that these elements are diatomic. To show this, their formulae contain a subscript number 2. For example:

hydrogen, H₂, nitrogen, N₂, oxygen, O₂, fluorine, F₂, bromine, Br₂, chlorine, Cl₂, iodine, I

What is a diatomic molecule?

Why are He, Ne, Xe called **mono**atomic substances?

What do Br₂, H₂, O₂, HF, F₂, HBr all have in common?

Which ones are elements?

Which ones are compounds?

Why are Br₂, H₂, O₂, HF, F₂, HBr called diatomic molecules?

Draw a diagram of each of the chemicals:

Br ₂	H ₂	O ₂	HF	F ₂	HBR

1. What elements have we got?)
-------------------------------	---

- 2. What little numbers do they have?
- 3. Are there any big numbers?

H ₂ O	
Element	Number of atoms
Total	

2MgO	
Element	Number of atoms
Total	

N ₂			
Element	Number of atoms		
Total			

4Li ₂ OH			
Element	Number of atoms		
Total			

СО	
Element	Number of atoms
Total	

CO ₂	
Element	Number of atoms
Total	

CuSO ₄	
Element	Number of atoms
Total	

C ₆ H ₁₂ O ₆	
Element	Number of atoms
Total	

Ones to learn! This year you will be tested on the elements in year 8 and 9 elements and compounds.

It is vital as a chemistry student that you know the formulas of common substances. Here is a list of substances whose formulas you should know at all times.

leme	nts			Compou	nds
Al	aluminium	Mg	magnesium	NH ₃	ammonia
Ar	argon	Hg	mercury	CaCO ₃	calcium carbonate
Br ₂	bromine	Mg	magnesium	co	carbon monoxide
Ca	calcium	Ne	neon	CO2	carbon dioxide
С	carbon	Ni	nickel	CuSO4	copper sulfate
Cl ₂	chlorine	N ₂	nitrogen	HCL	hydrochloric acid
Cr	chromium	O ₂	oxygen	CH₄	methane
Co	cobalt	P4	phosphorus	HNO ₃	nitric acid
Cu	copper	Pt	platinum	NO	nitrogen monoxide
F ₂	fluorine	к	potassium	NO ₂	nitrogen dioxide
Au	gold	Si	silicon	NaCl	sodium chloride
He	helium	Ag	silver	NaOH	sodium hydroxide
Hz	hydrogen	Na	sodium	SO ₂	sulfur dioxide
l ₂	iodine	Sa	sulfur	H ₂ SO ₄	sulfuric acid
Fe	iron	Sn	tin	H ₂ O	water
Pb	lead	Ti	titanium		
Li	lithium	Zn	zinc		

Name	Picture	Atom, element or	Formula
		Mono/diatomic?	
Oxygen			
joined togther)			
Carbon			
(A single carbon atom)			
Water			
(2 hydrogen atoms joined to oxygen)			
Carbon dioxde			
to 1 carbon atoms)			
Bromine			
joined togther)			
Hydrogen			
joined together)			
Sodium			
(A single sodium atom)			
Sodium chloride			
(A sodium atom joined to a chlorine atom)			
Sulfur			
(A single sulfur atom)			
Carbon monoxide			
(A carbon atom joined			

Naming compounds

Naming compounds is easy if you follow these 3 simple rules.

Rule one

The element that is furthest left in the periodic table comes first, eg Sodium Chloride/Carbon dioxide

Rule two

If there are only two elements in the compound then the compounds name ends in –ide, eg A compound of copper and sulfur is called copper sulfide.

Rule three

If the compound contains three elements one of which is oxygen then the compound name will end in –ate or –ite, eg Calcium carbonate contains calcium, carbon and oxygen.

Additional point: Sometimes more than one compound is made from the same elements. For example, there are several different types of nitrogen oxide.

When this happens, the number of a particular type of atom is shown by using 'mono-' (one), 'di-' (two) or 'tri-' (three).

Naming compounds

Use the naming rules you have learnt to answer the following questions.

 Compounds that contain oxygen and one other element are called oxides. Name these oxides: (3)

a. FeS

b. ZnS _____

	c.	H ₂ S	
4.	Cor Nar a.	npounds that contain chlorine and one o ne these chlorides: (3) KCl	ther element are called chlorides.
	b.	NaCl	30
	c.	HCI	
5.	Cor Nar a.	npounds that contain oxygen, sulfur and ne these sulfates: (3) CuSO4	one other element are called sulfates. 65.38
	b.	ZnSO4	
	c.	Na ₂ SO ₄	
6.	Cor Nar a.	npounds that contain oxygen, carbon and ne these carbonates: (3) CuCO3	d one other element are called carbonates.
	b.	Na ₂ CO ₃	
7.	c. Cor Nar a.	MgCO₃ npounds that contain oxygen, nitrogen a ne these nitrates: (3) NaNO₃	nd one other element are called nitrates.
	b.	KNO3	
	c.	AgNO ₃	63.546
8	Νοι	w you've got the hang of it try naming th	uese compounds: (12)
0.	a.	liCl	g CaCO ₂
	b.	MgSQ4	h. K2SO4
	с.	Li ₂ O	i. RbNO3
	d.	CaS	i. CaCl ₂
	e.	 ZnO	k. NiS
	f.	LiNO ₃	I. K ₂ CO ₃
Exte	ensic	on:	
9.	The	ese may look a bit different, but you can u	use the same rules. Try naming them: (4)
	a.	Al ₂ O ₃	c. Al ₂ (SO ₂) ₃
	b.	Zn(NO ₃) ₂	d. Al ₂ (CO ₃) ₃ 19
10.	Sug	gest names for these compounds: (4)	
	a.	KBr	c. AIPO4 39.098
	b.	BN	d. NaHCO₃

I

All:

When does a compound end in-ide?

When a compound end in does -ate?

Now lets put it all together

	Elements found in the compound	Name of compound	Number of each element
MgO	Magnesium and Oxygen		1 Mg and 1 O
K2O			
CuBr ₂			
NaNO ₃			
FeS			
FeSO ₄			
CaCO ₃			

- You can think of atoms a bit like lego pieces. Imagine taking one or more objects made of lego, then
 rearranging the pieces to build something new. That's basically what a chemical reaction is"
- "The process is often difficult to reverse: Once atoms have rearranged into a new substance, it can be difficult (but not impossible) for them to rearrange back to how they were at the start.

Substances mixed	l saw (all your observations)	Was something new made?	Can it be reversed? If so, how?	Chemical or physical change?

Definition:		Characteristics:	
	Chemica	l reaction —	
Examples		Opposites and Non-e	xamples
Definition:		Characteristics:	
	Physica	I change	

Task 2:	Chemical Change	Physical Change
1) A new substance is formed		
2) Boiling		
3) Baking a cake		
4) Rotting fruit		
5) Lighting a candle		
6) Melting candle wax		
7) Atoms rearrange and bond with different ones		
8) Particles rearrange into a regular order, all touching		
9) $CO_2(g) \rightarrow CO_2(s)$		
10) C (s) + O ₂ (g) \rightarrow CO ₂ (g)		

Task 3

Adding acid to alkali	Fireworks	Driving a car
Ice cream melting	Boiling the kettle	frying an egg
Burning a candle	Melting candle wax	Dissolving sugar in tea
Lighting a match	Making ice cubes	Ironing clothes
Printing	Baking a cake	Launching a space rocket

Concept 5: Physical and chemical properties of elements

We are going look at the varying physical properties of different elements

Key Idea

The position of an element on the periodic table provides information about its properties.

Key Idea The majority of elements are metals and they are found on the left and in the middle of the periodic table.

Metals and non-metals have different properties and different reactions.

Complete the table as you are shown different elements

Name	Metal/ non metal	Appearance	Melting point	Conducts electricity and heat?	Density	Malleable Ductile Brittle?
Oxygen						
Magnesium						
Copper						
Chlorine						
Carbon						
Sodium						

Most metals share a lot of properties, such as being good conductors of heat and electricity.

Non-metals often have the opposite properties. For example, they are usually poor conductors of heat and electricity.

Complete the table:

Property	METALS	NON-METALS
State at room temperature		
Melting points		
Electrical conductivity		
Thermal conductivity		
Appearance		
Density		
Strength		
Oxides		
Malleability & ductility		

Using the properties of metals and non-metals, decide whether each of the following elements is a metal or non-metal.

	Appearance	Electrical conductivity	Melting point (°C) Strength		Density as solid (g/cm ³)	Metal or non-metal
а	silvery	conductor	961	strong	10.5	
b	purple-black	insulator	114	weak	4.9	
с	shiny white	conductor	232	fairly strong	7.3	
d	dark grey	insulator	217	weak	4.8	
e	brown	insulator	- 7	-	3.1	
f	green	insulator	- 101	-	1.6	
g	yellow	conductor	1063	strong	19.3	
h	silvery	conductor	- 39	-	13.6	
i	black	conductor	3730	weak	2.2	
j	silvery white	conductor	98	strong	0.9	

How did you tell apart the metals form the non-metals?

Concept 6 :The periodic table

We are going to look at how the periodic table is ordered to show a list of elements

What do you think?

How are the Elements Arranged?

Nydrogen 1 H 10079	-	Ca	The colu alleo	e ver Imn d GF	rtica s ar ROU	al 'e - IPS			-			Th rov	e h vs a PEI	orizo are c RIO[onta alle DS	al ed		2 1 10000 10000
3 Li 6.941	4 Be 9.0122												5 B	6 C	7 N	8 0	9 F	10 Ne 20.110
11 Na 22.990	12 Mg 24.305												13 AI 26.962	14 Si 28.086	15 P 30.974	16 S	17 CI 35.453	18 Ar 39.948
19 K 30.008	20 Ca		21 Sc 44.956	22 Ti	23 V 50.942	24 Cr	25 Mn 54.908	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se 78.95	35 Br 72,904	36 Kr 83.80
37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag		49 In	50 Sn	51 Sb	52 Te	53	54 Xe
55 Cs	56 Ba	57-70 *	71 Lu	huhham 72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	B0 Hg	81 TI	B2 Pb	83 Bi	B4 Po	85 At	B6 Rn
132,91 Nandum 87 Fr 1221	88 Ra 1228	89-102 ¥ ¥	174.97 Iswendum 103 Lr [252]	178.49 rutherfordum 104 Rf D8.11	180.95 dubnium 105 Db pti2	105 Sg	196.21 bohrium 107 Bh [204]	190.23 hassium 108 HS	190.22 meltherturn 109 Mt 2381	106.08 unuveillum 110 Uun	196.97 unununkum 111 Uuuu 1773	112 Uub 1277]	204.38	114 Uuq	206.96	post	210	12523

Like many scientists working at the end of the 19th-century the Russian chemist Dmitri Mendeleev (1834-1907) was looking for ways to organise the known elements. Mendeleev published his first periodic table of the elements in 1869. Mendeleev arranged the elements in Key Idea order of increasing mass. When he did this he noted that the chemical properties of the elements and their compounds showed various trends. He then arranged the elements by putting those with similar properties below each other into groups. To make his classification work Mendeleev made a few changes to his order.

Task 1 : Highlighted the following on your periodic table – Metals, Non-metals, Group 1, Group 2, Transition Metals, Group 7 and Group 0/8.

Task 2: Complete the table

Symbol	Name	Period	Group
Н	Hydrogen	Period 1	Not really in a group
		Period 2	Group 1
		Period 2	Group 3
С			
		Period 2	Group 5
	Oxygen		
	Fluorine		
Na	Sodium	Period 3	Group 1
Mg			
		Period 3	Group 3
Si	Silicon		
		Period 3	Group 5
		Period 3	Group 6
		Period 3	Group 7
Ar	Argon		
К	Potassium		
Са			

<u>Test 2:</u>	
Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
	Test 2: Question 1 Question 2 Question 3 Question 4 Question 5

<u>Test 3:</u>	<u>Test 4:</u>	
Question 1	Question 1	
Question 2	Question 2	
Question 3	Question 3	
Question 4	Question 4	
Questions 5	Question 5	

<u>Test 5:</u>	<u>Test 6:</u>	
Question 1	Question 1	
Question 2	Question 2	
Question 3	Question 3	
Question 4	Question 4	
Questions 5	Question 5	

Formula Literacy check Elements:

- - -- - **,**

	name	formula
1	oxygen	
2	sodium	
3	carbon	
4	nitrogen	
5	iron	
6	hydrogen	
7	potassium	
8	gold	
9	calcium	
10	argon	

	name	formula
1	hydrogen	
2	carbon	
3	magnesium	
4	sulfur	
5	chlorine	
6	helium	
7	gold	
8	aluminium	
9	sodium	
10	nickel	

	name	formula
1	nitrogen	
2	copper	
3	calcium	
4	silicon	
5	iodine	
6	phosphorus	
7	silver	
8	iron	
9	neon	
10	mercury	